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Abstract

The concept of quasi-local masses was proposed by physicists

about forty years ago to measure the energy of a given compact

region by a closed spacelike 2-surface. There are several natural

conditions which we expect a quasi-local mass to satisfy ([39]):

1. A quasi-local mass must be non-negative in general and zero

when, and only when the ambient spacetime of the surface is

the Minkowski spacetime in the asymptotically flat case (or

hyperbolic space in the asymptotically hyperbolic case). These

are called the positivity and rigidity conditions.

2. Also, the ADM mass should be recovered as the surfaces tend

to the spacial infinity.

In this thesis, we will report some results about the limiting

behaviors and positivity of some quasi-local masses, both in the

asymptotically flat case and in the asymptotically hyperbolic case.
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Introduction 1

Introduction

As is well known, by the equivalence principle in general relativity, the concept

of gravitational energy at a point is not well defined. The local effects of gravity

can be removed by using a freely falling frame. The object centered at the origin

of such a frame will not experience any gravitational acceleration.

On the other hand, when there is asymptotic symmetry (asymptotically flat

or hyperbolic), the concepts of total energy and momentum can be well defined.

In the asymptotically flat case, these are the so called ADM energy momentum

[2] and the Bondi energy-momentum when the system is viewed from spatial

infinity and null infinity, respectively. It was proved by Bartnik [3] that in an

asymptotically flat manifold, these concepts are well-defined, i.e. independent

of the coordinates chosen. These concepts are fundamental in general relativity

and have been proven to be natural. Moreover, the works of Schoen-Yau [31, 32],

Witten [41] show that they satisfy the important positivity condition. These

kinds of results are now known as positive mass theorems. However, when the

physical system is not isolated, or the asymptotic symmetry fails, there would be

limitations to these concepts. It was proposed about forty years ago to measure

the energy of a system by enclosing a region with a “membrane”, i.e. a closed

spacelike 2-surface, and define on it an energy-momentum 4-vector. This is the

motivation behind the definition of quasi-local masses of surfaces.

There are several natural conditions which we expect a quasi-local mass to

satisfy (see for example [39]):

1. Most importantly, a quasi-local mass must be non-negative in general and

zero when, and only when the ambient spacetime of the surface is the

Minkowski spacetime (or hyperbolic space in the asymptotically hyperbolic

case). These are called the positivity and rigidity conditions.

2. Also, the ADM mass or Bondi mass should be recovered as the surfaces



Introduction 2

tend to the spacial or null infinity.

There is still no universal agreement on the definition of the quasi-local mass,

and many other definitions have been proposed, for example from Hawking [13]

and Penrose [27]. A promising one was given by Brown-York [7], motivated by

Hamiltonian formulation. Shi and Tam [34] proved that it is positive in the time

symmetric case, but in general it is not positive. Later on, Wang and Yau [38]

proposed the notion of Wang-Yau mass and proved its positivity and rigidity.

The study of these quasi-local masses and their relations is now a subject under

intense study.

In this thesis, we will establish some results about the limiting behaviors and

positivity of some quasi-local masses in asymptotically flat (AF) or asymptotically

hyperbolic (AH) manifolds.

In Chapter 1, we will discuss the limiting behaviors of the Brown-York quasi-

local mass of some family of surfaces. As mentioned before, we expect that the

quasi-local mass of the boundary of exhausting domains tends to the ADM mass.

Indeed, many people have proved that the Brown-York quasi-local mass of the

coordinate sphere tends to the ADM mass in an AF manifold, see for example

the works of Brown-York [8], Hawking-Horowitz [14], Baskaran-Lau-Petrov [4],

Shi-Tam [34] and also Fan-Shi-Tam [12]. Shi-Wang-Wu [36] also proved that the

same result is true even for surfaces which are not necessarily coordinate spheres,

but are nearly round near infinity.

The motivation of investigating the Brown-York mass for some general class

of surfaces is as follows. In [3], Bartnik proved the following important result (see

Theorem 1.3 for a more precise statement):

Theorem 0.1. Suppose (M,γ) is an AF manifold with integrable scalar curva-

ture. Let {Dk} be an exhaustion of M by closed sets such that the set Sk = ∂Dk

are connected C1 surfaces (not necessarily coordinate spheres) satisfying some
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reasonable conditions. Then

mADM(M,γ) = lim
k→∞

1

16π

∫
Sk

3∑
i,j=1

(γij,i − γii,j) νjdσ0.

That is, the ADM mass is independent of the sequence of {Sk}. (Note that ADM

mass is defined exactly as the R.H.S. of the above equation, except that Sk are

coordinate spheres. )

Because of this result, it is natural to ask if the Brown-York quasi-local mass of

some general family of surfaces, other than those which are close to the coordinate

spheres, will tend to the ADM mass in some AF manifolds. We will see in this

chapter that this is true for certain kinds of revolution surfaces, for example a

family of expanding ellipsoids, which are not close to the coordinate spheres.

More precisely we will prove the following

Theorem A. [Theorem 1.6, Limiting behaviors in AF case] If (N3, g) is an

asymptotically Schwarzchild manifold and S is a given closed revolution surface

S. Then there is an ε > 0 such that for any family of revolution surfaces Sa with

Gaussian curvatures of order O(a−2), mean curvatures of order O(a−1) and radial

distances of order O(a), if the rescaled surfaces a−1Sa are ε-close to S, then the

Brown-York masses of the surfaces will tend the ADM mass:

lim
a→∞

mBY (Sa) = mADM(N, g).

This partly generalizes the results of [6, 34, 12].

In Chapter 2, we will work in the asymptotically hyperbolic (AH) case. The

motivation of this chapter is quite similar to the previous chapter. In particular,

this is partly motivated by the positive mass theorem proved by X.D. Wang

[40] in an AH manifold. Let us first recall the positive mass theorem in an AF

manifold: if we are given a complete asymptotically flat initial data set (M3, g, h)

for the Einstein equations, we can then define the total 4-momentum (E,P ) of

(M3, g, h), where P ∈ R3. The positive mass theorem of Schoen-Yau [31, 33, 32]

then states that
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Theorem 0.2. Let (M3, g, h) be an asymptotically flat initial data set satisfying

the dominated energy condition (e.g. non-negative scalar curvature when h = 0),

then E ≥ |P |.

This can be interpreted as the 4-momentum being a future directed non-

spacelike vector in R3,1. Later on, this result was reproved by Witten [41] (under

spin condition) using a different proof involving spinors. The spinor method turns

out to be very useful in proving positive mass type theorems. In particular we

have the following result of X.D. Wang, which can be regarded as the analogue

of Schoen-Yau’s result in the AF case:

Theorem 0.3. [40, Theorem 2.5] If (Mn, g) is spin, asymptotically hyperbolic

and the scalar curvature R ≥ −n(n − 1), then the total mass defined by (see

Theorem 2.2 for precise definitions)

(

∫
Sn−1

trg0(h)dµg0 ,

∫
Sn−1

trg0(h)xdµg0) ∈ Rn,1

is a future-directed non-spacelike vector.

In an AH manifold, we can define a quasi-local mass integral which is similar

to the Brown-York mass in the AF case. Let (Ω, g) be a three dimensional

compact manifold with smooth boundary Σ homeomorphic to sphere. Under

certain conditions, Σ can be uniquely embedded into H3 ⊂ R3,1. Then the quasi-

local mass integral of Ω is defined as:∫
Σ

(H0 −H)X (1)

where H0 is the mean curvature of Σ in H3 and X = (x0, x1, x2, x3) is the position

vector in R3,1.

The motivation of this definition is as follows. In [35], Shi and Tam proved

that if the scalar curvature of Ω satisfies R ≥ −6, then the vector
∫

Σ
(H0 −H)W

is a future directed non-spacelike vector for W (x0, x1, x2, x3) = (αx0, x1, x2, x3)

with α > 1 depending on the geometry of Σ. (This is exactly Theorem C when
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n = 3. ) Hence W is close to the position vector. It is also conjectured by Shi

and Tam that the same result is true if W is replaced by the position vector X.

It is therefore natural to ask if the quasi-local mass integral defined as in (1) for

coordinate spheres will tend to the total mass as defined in Theorem 0.3. We will

give a positive answer to this question. Namely, we will show that

Theorem B. [Theorem 2.3, Limiting behaviors in AH case] In an asymptotically

hyperbolic manifold (M3, g), for a coordinate sphere Sr which is close enough to

infinity, we can associate with it a quasi-local mass expression (as a vector in

R3,1), which will tend to the total mass of (M3, g) defined by Theorem 0.3 when

Sr approaches infinity.

Whereas the first two chapters deals with the limiting behaviors of the quasi-

local masses, in Chapter 3 we will look at the positivity of a quasi-local mass.

This chapter is also closely related to Chapter 2. As mentioned before, Witten

[41] (see also [26, 3]) gave a simplified proof of the positive mass theorem using

the spinor method. Since then the method of spinor has been adopted by many

people to prove positive mass type theorems or some rigidity results [34, 1, 23, 38].

For example, M. T. Wang and Yau [38] developed a quasi-local mass for a three

dimensional manifold with boundary whose scalar curvature is bounded from

below by some negative constant. Using spinor method, they were able to prove

that this mass is non-negative. Later on, Shi and Tam [35] also proved a similar

result in the three dimensional case, but with a simpler definition of the mass.

More precisely, they proved the following:

Theorem 0.4. ([35] Theorem 3.1) Let (Ω, g) be a compact orientable 3-dimensional

manifold with smooth boundary Σ = ∂Ω, homeomorphic to a 2-sphere. Assuming

the following conditions:

1. The scalar curvature R of (Ω, g) satisfies R > −6k2 for some k > 0,

2. Σ is a topological sphere with Gaussian curvature K > −k2 and mean
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curvature H > 0, so that Σ can be isometrically embedded into H3
−k2 with

mean curvature H0.

Then there is a future directed time-like vector-valued function W on Σ such that

the vector ∫
Σ

(H0 −H)WdΣ

is time-like. Here W = (x1, x2, x3, αt) for some α > 1 depending only on the

intrinsic geometry of Σ, with X = (x1, x2, x3, t) being the future-directed unit

normal vector of H3
−k2 (defined in (3.1)) in R3,1.

In this chapter, we will prove an analogous result in higher dimension for spin

manifolds (note that three-dimensional orientable manifolds are spin) as follows.

Theorem C. [Theorem 3.16, Positivity of Shi-Tam mass] Let n ≥ 3 and (Ω, g)

be a compact spin n-manifold with smooth boundary Σ such that

1. The scalar curvature R of (Ω, g) satisfies R > −n(n− 1)k2 for some k > 0,

2. Σ is topologically a (n− 1)-sphere with sectional curvature K > −k2, mean

curvature H > 0 and Σ can be isometrically embedded uniquely into Hn
−k2 ⊂

Rn,1 with mean curvature H0.

Under these conditions, we can define on Σ a quasi-local mass introduced by Shi

and Tam [35]:

mST (Σ) =

∫
Σ

(H0 −H)W ∈ Rn,1

where W = (x1, x2, · · · , xn, αt) with α > 1 depending on the geometry of Σ and

(x1, x2, · · · , xn, t) is the position vector of Σ in Rn,1.

Then the mass is positive in the sense that mST (Σ) is a future directed non-

spacelike vector in Rn,1.

There are two important ingredients in establishing the main result. One is

a monotonicity formula (Lemma 3.6) for the mass expression, and the other is a
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positive mass type theorem (Theorem 3.7). The later is particularly important.

This theorem was originally proved by M.T. Wang and Yau [38] in the three

dimensional case. Here we will give a proof in general dimension. In particular,

the Killing spinor fields play an important role in the proof, and we will give

a detailed study on them. What is new in the proof of the theorem in higher

dimension are two identities involving Killing spinors on the hyperbolic space

(Proposition 3.9 and 3.10).

Theorem A, Theorem B and Theorem C, which are the main results of this

thesis, will be proved in Chapter 1, 2 and 3 respectively.



Chapter 1

Brown-York mass in AF

manifolds

1.1 Asymptotically flat manifolds

In this chapter, we will discuss the limiting behaviors of the quasi-local mass

of a family of surfaces in an asymptotically flat manifold. Let us first recall

some definitions. We will adopt the following definition of asymptotically flat

manifolds.

Definition 1.1. A complete three dimensional manifold (M,γ) is said to be

asymptotically flat (AF) of order τ (with one end) if there is a compact sub-

set K such that M \K is diffeomorphic to R3 \BR(0) for some R > 0 and in the

standard coordinates in R3, the metric γ satisfies:

γij = δij + σij (1.1)

with

|σij|+ r|∂σij|+ r2|∂∂σij|+ r3|∂∂∂σij| = O(r−τ ), (1.2)

for some constant 1
2
< τ ≤ 1.

Here r and ∂ as the Euclidean distance and the standard derivative operator

on R3 respectively, δ is the usual Euclidean metric.

8



Brown-York mass in AF Manifolds 9

A coordinate system of M near infinity so that the metric tensor in this system

satisfy the above decay conditions is said to be admissible. In such a coordinate

system, we can define the ADM mass as follows.

Definition 1.2. The Arnowitt-Deser-Misner (ADM) mass (see [2]) of an asymp-

totically flat manifold (M,γ) is defined as:

mADM(M,γ) = lim
r→∞

1

16π

∫
Sr

(γij,i − γii,j) νjdσ0, (1.3)

where Sr is the Euclidean sphere, dσ0 is the area element of Sr induced by the

Euclidean metric, ν is the outward unit normal of Sr in R3 and the derivative is

the ordinary partial derivative.

To see that this gives a reasonable definition of mass, let us look at the

Schwarzschild metric. On a three dimensional slice of Schwarzschild spacetime,

corresponding to time = constant, the metric is given by (1 + m
2r

)4δ (using the

convention that G = c = 1), where m is the mass of a star (as r → ∞, its limit

becomes the Newtonian model of a point mass with mass m). It is easily calcu-

lated that the integral on the R.H.S. of (1.3) also tends to m as r → ∞. Thus

the ADM mass gives a reasonable definition of mass, at least in this case.

We always assume that the scalar curvature is in L1(M) so that the limit

exists in the definition. In [3], Bartnik showed that the ADM mass is a geometric

invariant. More precisely, he proved the following theorem (see [3, Proposition

4.1] for a more general setting):

Theorem 1.3. Suppose (M,γ) is an AF manifold with scalar curvature R(γ) ∈

L1(M). Let {Dk}∞k=1 be an exhaustion of M by closed sets such that the set

Sk = ∂Dk are connected C1 surfaces without boundary in R3 such that

rk = inf{|x|, x ∈ Sk} → ∞ as k →∞

r−2
k Area(Sk) is bounded as k →∞.

Then

mADM(M,γ) = lim
k→∞

1

16π

∫
Sk

(γij,i − γii,j) νjdσ0.
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That is, the ADM mass is independent of the sequence of {Sk}.

Next, let us recall the definition of the Brown-York quasi-local mass. Suppose

(Ω, γ) is a compact three dimensional manifold with smooth boundary ∂Ω, if

moreover ∂Ω has positive Gauss curvature, then the Brown-York mass of ∂Ω is

defined as (see [7, 8]):

Definition 1.4.

mBY (∂Ω) =
1

8π

∫
∂Ω

(H0 −H)dσ (1.4)

where H is the mean curvature of ∂Ω with respect to the outward unit normal

and the metric γ, dσ is the area element induced on ∂Ω by γ and H0 is the mean

curvature of ∂Ω when embedded in R3.

The existence of an isometric embedding in R3 (Weyl’s embedding theorem)

for ∂Ω was proved by Nirenberg [25], the uniqueness of the embedding was given

by [15, 30, 29], so the Brown-York mass is well-defined.

It can be proved that the Brown-York mass and the Hawking quasi-local mass

[13] of the coordinate spheres tends to the ADM mass in some AF manifolds, see

[8, 14, 6, 4, 34, 12], and even of nearly round surfaces [36]. It is therefore natural

to ask whether the quasi-local mass of a more general class of surfaces tends to

the ADM mass.

In the coming sections, we will consider a special class of AF manifolds, called

asymptotically Schwarzschild manifolds, which is defined as follows:

Definition 1.5. (N, g̃) is called an asymptotically Schwarzschild manifold if N =

R3 \K, K is a compact set containing the origin, and

g̃ij = φ4δij + bij, φ = 1 +
m

2r
,m > 0,

where |bij|+ r|∂bij|+ r2|∂∂bij|+ r3|∂∂∂bij| = O (r−2) .

Clearly, (N, g̃) is an AF manifold. For b = 0, (N, g̃) is called a Schwarzschild

manifold. In this case, we always denote g̃ as g. Note that the scalar curvature
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of (N, g) is zero [19] (page 283) and that of (N, g̃) is in L1(N), so in both cases

the ADM mass is well defined.

1.2 Brown-York mass of revolution surfaces

In this section, we will study the limiting behaviors of Brown-York mass on some

family of convex revolution surfaces in an asymptotically Schwarzschild manifold.

Our main result is the following:

Theorem 1.6. [11] Let (N, g̃) be an asymptotically Schwarzschild manifold and

S be a C6,α (0 < α < 1) closed convex revolution surface parametrized by

(w(ϕ) cos θ, w(ϕ) sin θ, h(ϕ)), 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ l. (1.5)

Then there exists ε > 0 such that for any family of C5,α closed convex revolution

surfaces Sa in (R3, δ) satisfying the following conditions:

(i)

K ≥ C1

a2
(1.6)

where K is the Gaussian curvature of Sa with induced Euclidean metric.

(ii)

0 < H ≤ C2

a
(1.7)

where H is the mean curvature of Sa with induced Euclidean metric.

(iii)

C3a ≤ min
x∈Sa

r(x) ≤ max
x∈Sa

r(x) ≤ C4a, (1.8)

where Ci > 0 are independent of a for i = 1, 2, 3, 4.

Suppose also that (by applying a rotation if necessary) Sa is parametrized by

(awa(ϕ) cos θ, awa(ϕ) sin θ, aha(ϕ)) , 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ l

such that

|wa − w|C4 + |ha − h|C4 < ε for sufficiently large a. (1.9)
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Then

lim
a→∞

mBY (Sa) = mADM(N, g̃).

From this result, one has

Corollary 1.7. Let (N, g̃) be an asymptotically Schwarzschild manifold. Let {Si}

be a family of C7 closed convex revolution surfaces in (R3, δ) satisfying (1.6)-(1.8)

and is parametrized as:

(aiwi(ϕ) cos θ, aiwi(ϕ) sin θ, aihi(ϕ)) , 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ l

for some constant l > 0, here ai are positive numbers with lim
i→∞

ai = +∞. If there

is a constant c such that

|wi|C7 + |hi|C7 ≤ c

for all i, then there is a subsequence {Sik} of {Si} such that

lim
k→∞

mBY (Sik) = mADM(N, g̃).

To prove Theorem 1.6, we will show that we can actually reduce the case to

which the ambient space is Schwarzschild. The main proposition is the following:

Proposition 1.8. Let (N, g) be a Schwarzschild manifold. Suppose {Sa}a>0 is

a family of closed convex surfaces of revolution in (R3, δij) with the rotation axis

passing through the origin, satisfying (1.6)-(1.8). Then

lim
a→∞

mBY (Sa) = mADM(N, g).

Remark 1.9. The conditions (i) and (ii) in Theorem 1.6 imply that the principal

curvature λ of Sa in (R3, δ) satisfy C1

C2a
≤ λ ≤ C2

a
for any a. For, if 0 < λ1 ≤ λ2

are the principal curvatures, then (1.7) implies λ2 ≤ C2

a
. Together with (1.6),

λ1 ≥ C1

λ2a2 ≥ C1

C2a
.

Remark 1.10. By condition (i) of Theorem 1.6 and the Gauss-Bonnet theorem,

the Euclidean area of Sa is of order O(a2).
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We will first show in Subsection 1.2.1 how our main result follows from Propo-

sition 1.8 by a perturbation argument. We will then prove our Proposition 1.8

in Subsection 1.2.3. To do this, we need some estimates for the embeddings and

the various curvatures of Sa, which will be done in Subsection 1.2.2.

One example of surfaces satisfying the conditions in Theorem 1.6 is the family

of ellipsoids:

Sa =

{
(x1)2 + (x2)2 +

(x3)2

4
= a2

}
,

which is not nearly round [36]. In contrast, the Hawking mass of this family of

ellipsoids in (N, g) does not tend to the ADM mass of (N, g), indeed one can check

that the Hawking mass [13] of this family tends to negative infinity as a→∞.

1.2.1 Reduction to the Schwarzschild case

In this subsection, we will reduce the case of Theorem 1.6 to the Schwarzschild

case. Let us first compare the mean curvatures of Sa under different metrics.

Lemma 1.11. For the surfaces Sa satisfying the conditions in Theorem 1.6, we

have

|H̃ −H| ≤ Ca−3

for some constant C independent of a, where H̃ and H are the mean curvatures

of Sa with respect to g̃ and g respectively.

Proof. We claim that

|Ã− A|g = O
(
a−3
)

(1.10)

where A and Ã are the second fundamental forms with respect to g and g̃ respec-

tively.

Let ρ(x) defined on N to be the distance from x to Sa with respect to g̃. We

will use the fact [18, (7.10)]:

Ã(X, Y )− |∇ρ|gA(X, Y ) =
(

Γkij − Γ̃kij

)
X iY jρk (1.11)
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for any tangent vectors X, Y of Sa. For completeness, we prove it here. We

proceed as in [36] Lemma 2.6. First of all, we have

A(X, Y ) = g

(
∇X

(
∇ρ
|∇ρ|g

)
, Y

)
=
g(∇X(∇ρ), Y )

|∇ρ|g

=
X(Y (ρ))− (∇XY )(ρ)

|∇ρ|g

=
X iY jρij −X iY jΓkijρk

|∇ρ|g
,

(1.12)

here the subscript denotes ordinary derivative and Γkij are the Christoffel symbols

with respect to g, with the indices i, j, k = 1, 2, 3. Denote Γ̃kij to be the Christoffel

symbols with respect to g̃. Then since the g̃ gradient |∇̃ρ|g̃ = 1, we also have

Ã(X, Y ) = X iY jρij −X iY jΓ̃kijρk.

Combining this with (1.12), we can get (1.11).

Note that |Γkij − Γ̃kij| = O (r−3) by the assumptions of the metrics. By asymp-

totic flatness, 1 = g̃ijρiρj ≥ C
∑

ρ2
i , so |ρi| is uniformly bounded. The condition

g̃ij = gij + bij implies |g̃ij − gij| = O (r−2), so

||∇ρ|2g − 1| = |(gij − g̃ij)ρiρj| = O
(
r−2
)

which implies

|∇ρ|g = 1 +O
(
r−2
)
.

Finally, the principal curvatures λi in Euclidean metric are of order O (a−1) by

Remark 1.9, the principal curvatures λi with respect to g are related to λi by

([19] Lemma 1.4): λi = φ−2λi + 2φ−3n(φ) where n is the unit outward normal

with respect to δ. In particular, as n(φ) = O(a−2),

|A|g = O(a−1).

Combining all these together with (1.11), it is easy to see that (1.10) holds.

Combining (1.10) and the metric conditions of g and g̃ in Definition 1.5, this

implies the lemma.
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Let (Sa, ds̃
2) , (Sa, ds

2) denote the surface Sa with metric ds̃2, ds2 induced

from g̃, g respectively. By Lemma 1.15, for a >> 1, the Gaussian curvatures on

(Sa, ds̃
2) and (Sa, ds

2) are both positive, which implies that they can be isomet-

rically embedded into (R3, δ) uniquely. Now let us compare the mean curvature

after embedding:

Lemma 1.12. Under the same notations and conditions of Theorem 1.6. Let

H̃0, H0 be the mean curvature of the embedded surfaces of (Sa, ds̃
2) and (Sa, ds

2)

in (R3, δ) respectively, as a >> 1, we have |H̃0 −H0| ≤ C5a
−3 for some constant

C5(S).

Proof. We can set ϕ̂ = π
l
ϕ, so it suffices to show that the lemma holds for l = π.

Also, by identifying S and Sa with the sphere S2, we can regard all the metrics

here (ds2 etc.) to be metrics on S2. We will denote wa as w and ha as h. Similar

to (1.22), one has ds
2 = a2 ((w′2 + h′2) dϕ2 + w2dθ2) ,

ds2
S =

(
w′2 + h

′2
)
dϕ2 + w2dθ2

which are the metrics on Sa and S induced from the Euclidean metric respectively.

By definition,

ds2 = φ4ds2, ds̃2 = ds2 + b, where b = bijdx
idxj

∣∣
Sa

on Sa.

From (1.9), w and its derivatives up to forth order are uniformly bounded for

a >> 1, the same holds for h. By the conditions of bij, it is easy to see that the

followings hold:

‖a−2ds̃2 − a−2ds2‖C3 = a−2‖b‖C3 ≤ C6a
−2, (1.13)

‖a−2ds2 − a−2ds2‖C3 = a−2‖(φ4 − 1)ds2‖C3 ≤ C6a
−1 (1.14)

for some constant C6(S). By (1.9), we have

‖a−2ds2 − ds2
S‖C3 ≤ C7ε (1.15)
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for some constant C7(S). So for a >> 1, by (1.14) and (1.15), we have

‖a−2ds2 − ds2
S‖C3 ≤ (C6 + C7) ε.

By the result of [24] Lemma 5.3, if we choose some 0 < ε <
δ

π1−α(C6 + C7)
such

that

‖a−2ds2 − ds2
S‖C2,α < δ

for sufficiently large a, where δ is the one given by [24] Lemma 5.3, then there

are isometric embeddings X̃ and X of (S2, a−2ds̃2) and (S2, a−2ds2) respectively,

such that by (1.13), for sufficiently large a,

‖X̃ −X‖C2,α ≤ C8‖a−2ds̃2 − a−2ds2‖C2,α = O
(
a−2
)

for some constant C8(S). Since aX̃, aX are the isometric embeddings of (S2, ds̃2)

and (S2, ds2) respectively. Hence |H̃0 −H0| = O (a−3) . The lemma holds.

Now we can prove Theorem 1.6.

Proof of Theorem 1.6. By Proposition 1.8, we know that

lim
a→∞

1

8π

∫
Sa

(H0 −H) dσ = mADM(N, g).

Since the ADM mass of (N, g) is equal to that of (N, g̃), combining with Lemma

1.11 and Lemma 1.12, we can get the result.

1.2.2 Estimates for the curvatures and embeddings of Sa

For simplicity, from now on to the end of this chapter, we use O
(
ak
)

to denote a

quantity which is bounded by Cak for some constant C independent of a as a is

sufficiently large. We will first compute the mean curvature of Sa in (N, g) and

of the embedded surface of the Euclidean space respectively.

From the assumptions of Sa, we can assume that Sa is parametrized by

(awa(ϕ) cos θ, awa(ϕ) sin θ, aha(ϕ)), 0 ≤ ϕ ≤ la, 0 ≤ θ ≤ 2π,
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wa(ϕ), ha(ϕ) being smooth functions for ϕ ∈ [0, la] (i.e. wa, ha can be extended

smoothly on a slightly larger interval ). Moreover,

(i)

ha(0) > ha(la)

C3 ≤
√
w2
a + h2

a ≤ C4

wa > 0 on (0, la),

(1.16)

(ii) The generating curve (wa(ϕ), ha(ϕ)) is parameterized by arc length. i.e.

w′2a + h′2a = 1. (1.17)

(iii) wa is anti-symmetric about 0 and la, ha is symmetric about 0 and la, i.e.

wa(−ϕ) = −wa(ϕ), wa(la + ϕ) = −wa(la − ϕ),

ha(−ϕ) = ha(ϕ), ha(la + ϕ) = ha(la − ϕ) for ϕ ∈ [0, ε).
(1.18)

This implies

wa(0) = wa(la) = h′a(0) = h′a(la) = 0. (1.19)

Since Sa is convex in (R3, δ) and the Gaussian curvature K of Sa with the induced

metric ds2 is

K =
h′a(w

′
ah
′′
a − w′′ah′a)
a2wa

for ϕ ∈ (0, la).

So h′a < 0 for ϕ ∈ (0, la) by (1.16).

Let φa be the function φ restricted on Sa, note that in (ϕ, θ) coordinates,

φa = φa(ϕ) is independent of θ. We have the following lemma:

Lemma 1.13. The functions
wa
h′a

and
φ′a
h′a

can be extended continuously to the

whole [0, la]. Moreover there exists a constant C independent of a such that for

all a, ∣∣∣∣wah′a
∣∣∣∣ ≤ C,

∣∣∣∣φ′ah′a
∣∣∣∣ ≤ C

a
.

Proof. We first show that the limits lim
ϕ→0

wa
h′a

and lim
ϕ→la

wa
h′a

exist and are uniformly

bounded.
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The Gaussian curvature K of the point (0, 0, aha(0)) on Sa with induced

Euclidean metric is equal to K = h′′a(0)2

a2 . (This can be seen by noting that for

an arc-length parametrized plane curve (wa(ϕ), ha(ϕ)), its curvature is given by

−w′′ah′a + h′′aw
′
a. ) So at (0, ha(0)), its curvature is h′′a(0).

As K ≥ C1

a2
by (1.6), |h′′a(0)| ≥

√
C1 > 0. By L’Hospital rule,

lim
ϕ→0

wa
h′a

=
w′a(0)

h′′a(0)

which is finite and is bounded by some C > 0 by (1.6) and (1.17). The same

applies to lim
ϕ→la

wa
h′a

.

Next, observe that one of the principal curvatures of Sa in (R3, δ) is − h′a
awa

(

[10] p.162, (10)). So by Remark 1.9, we have
∣∣∣wah′a ∣∣∣ ≤ C on the whole [0, la] for all

a.

By differentiating φa = 1 +
m

2a
√
w2
a + h2

a

, φ′a
h′a

= − m

2a(w2
a+h2

a)
3
2

(w′a
wa
h′a

+ha) which

can be extended to [0, la] by the above, and is of order O (a−1) by (1.16), (1.17).

We have the following estimates

Lemma 1.14. Regarding φa = φa(ϕ) as functions on Sa, we have φ′a = O(a−1)

and φ′′a = O(a−1).

Proof. Let A = w2
a+h2

a. As φa = 1+
m

2a
√
A

, we only have to prove (A−
1
2 )′ = O(1)

and (A−
1
2 )′′ = O(1). By direct computations and (1.16), (1.17),

|(A−
1
2 )′| = |A−

3
2 (waw

′
a + hah

′
a)| ≤ A−

3
2 (w2

a + h2
a)

1
2 (w′2a + h′2a )

1
2 = O(1).

|(A−
1
2 )′′| =

∣∣∣∣32A− 5
2 (waw

′
a + hah

′
a)

2 − A−
3
2 (1 + waw

′′
a + hah

′′
a)

∣∣∣∣
≤ 3

2
A−

5
2 (w2

a + h2
a) + A−

3
2 (1 + (w2

a + h2
a)

1
2 (w′′2a + h′′2a )

1
2 ).

The two principal curvatures of Sa with induced Euclidean metric are − h′a
awa

and

a−1(w′′2a + h′′2a )
1
2 ([10] p.162, (10)), hence by Remark 1.9, |(A− 1

2 )′′| = O(1).
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From now on, we will drop the subscript a and denote wa by w, ha by h, φa

by φ and la by l. We also denote ds2 to be the metric on Sa induced from g.

Lemma 1.15. The Gaussian curvature K of (Sa, ds
2) is positive for sufficiently

large a. In particular, there exists a unique isometric embedding of (Sa, ds
2) into

(R3, δ) for sufficiently large a.

Proof. Let ds2 and ds2 be the metrics on Sa induced by δ and g respectively.ds
2 = a2(dϕ2 + w2dθ2) = Edϕ2 +Gdθ2,

ds2 = φ4ds2 = Edϕ2 +Gdθ2,

implies E = E +O(a), Eϕ = Eϕ +O(a), Eϕϕ = Eϕϕ +O(a)

Eθ = Eθ +O(a), Eθθ = Eθθ +O(a).

Similar result holds for G. By the formula K = − 1
2
√
EG

((
Eθ√
EG

)
θ

+
(

Gφ√
EG

)
φ

)
and the corresponding formula for K, one can get K = K + O (a−3). Hence the

lemma holds.

Now let us compute the mean curvature of a revolution surface in (R3, δ).

Lemma 1.16. For a smooth revolution surface S in (R3, δ) parametrized by

(au(ϕ) cos θ, au(ϕ) sin θ, av(ϕ)), 0 < ϕ < l, 0 < θ < 2π,

its mean curvature H with respect to δ is

H =
u′′

aTv′
− T ′u′

aT 2v′
− v′

aTu
where T =

√
u′2 + v′2.

Proof. The mean curvature H of S with respect to δ is computed to be

H =
v′u′′ − u′v′′

aT 3
− v′

aTu
.

Differentiating T 2 gives u′u′′ + v′v′′ = TT ′. This implies

v′u′′ − u′v′′ = v′u′′ +
u′2u′′ − u′TT ′

v′
=

(u′2 + v′2)u′′ − u′TT ′

v′
=
T 2u′′ − TT ′u′

v′
.

So we have H = u′′

aTv′
− T ′u′

aT 2v′
− v′

aTu
.
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Lemma 1.17. The mean curvature H of Sa with respect to g is

H =
w′′

aφ2h′
− h′

aφ2w
+ 4φ−3n(φ) (1.20)

where n is the outward unit normal vector of Sa with respect to δ.

Proof. By Lemma 1.16, the mean curvature of Sa with respect to δ is H =

w′′

ah′
− h′

aw
. The mean curvature H of Sa with respect to g is ([31], p. 72) H =

φ−2
(
H + 4φ−1n (φ)

)
. The result follows.

Lemma 1.18. For sufficiently large a, there is an isometric embedding of (Sa, ds
2)

into (R3, δ) which is given by

(x1, x2, x3) = (au(ϕ) cos θ, au(ϕ) sin θ, av(ϕ)), ϕ ∈ [0, l], θ ∈ [0, 2π] (1.21)

where  u = φ2w, v′ = φ2h′
(

1− 2φ′ww′

h′2
+O (a−2)

)
,

u′2 + v′2 = φ4.

Proof. The existence has already been proved in Lemma 1.15.

In (ϕ, θ) coordinates, the metric on Sa induced by g can be written as:

ds2 = a2φ4dϕ2 + a2φ4w2dθ2. (1.22)

We can regard (Sa, ds
2) as S2, the sphere with the metric ds2. Now we want

to find two functions u, v such that the surface written as the form (1.21) is an

embedded surface Sea of Sa into (R3, δ). First of all, the induced metric by the

Euclidean metric on the surface which is of the form (1.21) can be written as:

ds2
e = a2

(
u′2 + v′2

)
dϕ2 + a2u2dθ2.

Comparing this with (1.22), one can choose

u = φ2w. (1.23)
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Consider

φ4 − u′2 = φ2(φ2 − (2φ′w + φw′)2) = φ2(φ2(w′2 + h′2)− (2φ′w + φw′)2)

= φ2(φ2h′2 − 4φφ′ww′ − 4φ′2w2)

= φ4h′2
(

1− 4φ′ww′

φh′2
− 4φ′2w2

φ2h′2

)
.

(1.24)

By Lemma 1.13 and Lemma 1.14, the functions
φ′ww′

φh′2
,
φ′2w2

φ2h′2
can be extended

continuously on [0, l] with
φ′ww′

φh′2
= O(a−1),

φ′2w2

φ2h′2
= O(a−2). So 1 − 4φ′ww′

φh′2
−

4φ′2w2

φ2h′2
> 0 for sufficiently large a. For these a, we can take

v′ = φ2h′
(

1− 4φ′ww′

φh′2
− 4φ′2w2

φ2h′2

) 1
2

so that u′2 +v′2 = φ4. Note that by (1.18), v′ is an odd function for ϕ ∈ [−l, l]. By

choosing an initial value, one can get an even function v. By the above argument,

one has

v′ = φ2h′
(

1− 2φ′ww′

h′2
+O

(
a−2
))

.

From (1.23) and (1.24), near ϕ = 0, u, v can be extended naturally to (−ε, ε)

for some ε > 0. Since u is an odd function in ϕ , v is an even function in ϕ, and

u′2 + v′2 = T 2 > 0, the generating curve in {x2 = 0} is symmetric with respect to

x3-axis, and is smooth at ϕ = 0. Similarly, it is also smooth at ϕ = l. Hence the

revolution surface determined by the choice of u, v as above, can be extended

smoothly to a closed revolution surface, which is an embedded surface of Sa. This

completes the proof of the lemma.

1.2.3 Proof of Proposition 1.8

Now we are ready to prove Proposition 1.8.

Proof of Proposition 1.8. Let u, v be defined as in Lemma 1.18. Recall that u = φ2w, v′ = φ2h′
(

1− 2φ′ww′

h′2
+O (a−2)

)
,

u′2 + v′2 = φ4 = T 2 where T = φ2.

(1.25)
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By Lemma 1.14, we have T ′ = 2φ′ +O (a−2) , u′ = φ2w′ +O (a−1) ,

u′′ = φ2w′′ + 4φ′w′ + 2φ′′w +O (a−2) .

(1.26)

By Lemma 1.16 and Lemma 1.18,

H0 =
u′′

aTv′
− T ′u′

aT 2v′
− v′

aTu
. (1.27)

Combining with Lemma 1.17,

H0 −H =

(
u′′

aTv′
− w′′

aφ2h′

)
− T ′u′

aT 2v′
−
(

v′

aTu
− h′

aφ2w

)
− 4φ−3n(φ). (1.28)

Using (1.25) and (1.26),

u′′

aTv′
− w′′

aφ2h′
=

w′′

aφ2h′
+

4φ′w′

ah′
+

2φ′′w

ah′
+

2φ′ww′w′′

ah′3
− w′′

aφ2h′
+O

(
a−3
)

=
4φ′w′

ah′
+

2φ′′w

ah′
+

2φ′ww′w′′

ah′3
+O

(
a−3
)
.

(1.29)

By (1.25) and (1.26),

− T ′u′

aT 2v′
= −2φ′w′

ah′
+O

(
a−3
)
. (1.30)

By (1.25),

− v′

aTu
+

h′

aφ2w
= − h′

aφ2w
+

2φ′w′

ah′
+

h′

aφ2w
+O

(
a−3
)

=
2φ′w′

ah′
+O

(
a−3
)
.

(1.31)

Summing (1.29), (1.30) and (1.31) and comparing with (1.28), we have

H0 −H =
4φ′w′

ah′
+

2φ′′w

ah′
+

2φ′ww′w′′

ah′3
− 4φ−3n(φ) +O

(
a−3
)
.

As w′w′′ = −h′h′′ by (1.17), so

H0 −H =
4φ′w′

ah′
+

2φ′′w

ah′
− 2φ′wh′′

ah′2
− 4φ−3n(φ) +O

(
a−3
)
.

Denote the Euclidean area element of Sa by dσ0, the area element of (Sa, ds
2) by

dσ. Note that H0 −H = O (a−2), dσ − dσ0 = O (a−1) dσ0 and

∫
Sa

dσ0 = O
(
a2
)
.

To prove the result, it suffices to show

lim
a→∞

1

8π

∫
Sa

(H0 −H) dσ0 = m.
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The Euclidean area element is computed to be dσ0 = a2wdϕdθ. By (1.19) and

Lemma 1.13,∫
Sa

(
4φ′w′

ah′
+

2φ′′w

ah′
− 2φ′wh′′

ah′2
)dσ0 =2πa

∫ l

0

(
4φ′ww′

h′
+

2φ′′w2

h′
− 2φ′w2h′′

h′2
)dϕ

=2πa

∫ l

0

d

dϕ

(
2φ′w2

h′

)
dϕ

=0.

Since the norm of the Euclidean gradient of φ has |∇0φ| = O(r−2), one has

n(φ) = O(a−2). So

1

8π

∫
Sa

(H0 −H) dσ0 = − 1

2π

∫
Sa

φ−3n(φ)dσ0 +O
(
a−1
)

= − 1

2π

∫
Sa

n(φ)dσ0 +O
(
a−1
)
.

By the result of [3] (Proposition 4.1), the definition of the ADM mass of N can

be taken as

lim
a→∞

1

16π

∫
Sa

∑
i,j

(gij,i − gii,j)njdσ0 = m. (1.32)

where n is the unit outward normal of Sa with respect to δ. By a direct compu-

tation, ∑
i,j

(gij,i − gii,j)nj = −8φ3
∑
j

nj
∂φ

∂xj
= −8n(φ) +O

(
a−3
)
. (1.33)

Combining (1.32) and (1.33), we have

m = − lim
a→∞

1

2π

∫
Sa

n(φ)dσ0.

Therefore

lim
a→∞

1

8π

∫
Sa

(H0 −H)dσ = lim
a→∞

1

8π

∫
Sa

(H0 −H)dσ0 = m.

We are done.



Chapter 2

Quasi-local mass in AH manifolds

It is known that in an asymptotically flat manifold, the Brown-York quasi-local

mass of the coordinate spheres will converge to the ADM mass of the manifold

[12, 36, 11]. In this chapter, we will show an analogous result for asymptotically

hyperbolic (AH) manifolds.

2.1 Asymptotically hyperbolic (AH) manifolds

First we give the meanings of mass of an AH manifold and quasi-local mass. In

this chapter, all manifolds are assumed to be connected and orientable.

We will follow X. D. Wang [40] to define asymptotically hyperbolic manifolds

as follows:

Definition 2.1. A complete noncompact Riemannian manifold (Mn, g) is said

to be asymptotically hyperbolic (AH) if M is the interior of a compact manifold

M with boundary ∂M such that:

(i) there is a smooth function r on M with r > 0 on M and r = 0 on ∂M such

that g = r2g extends as a smooth Riemannian metric on M ;

(ii) |dr|g = 1 on ∂M ;

24
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(iii) ∂M is the standard unit sphere Sn−1;

(iv) on a collar neighborhood of ∂M ,

g = sinh−2(r)(dr2 + gr),

with gr being an r-dependent family of metrics on Sn−1 satisfying

gr = g0 +
rn

n
h+ e,

where g0 is the standard metric, h is a smooth symmetric 2-tensor on Sn−1

and e is of order O(rn+1), and the asymptotic expansion can be differentiated

twice.

Note that the definition is not as general as that in [9], see also [42]. In [40],

the following positive mass theorem was proved by Wang (see also [1, 9, 42])

Theorem 2.2. [40, Theorem 2.5] If (Mn, g) is spin, asymptotically hyperbolic

and the scalar curvature R ≥ −n(n− 1), then∫
Sn−1

trg0(h)dµg0 ≥
∣∣∣∣∫

Sn−1

trg0(h)xdµg0

∣∣∣∣ .
Moreover equality holds if and only if (M, g) is isometric to the hyperbolic space

Hn.

We only consider the case that n = 3, the theorem implies that if M is not

isometric to the hyperbolic space, then the vector

Υ =

(∫
Sn−1

trg0(h)dµg0 ,

∫
Sn−1

trg0(h)xdµg0

)
is a future directed timelike vector in R3,1, the Minkowski space. We may consider

Υ as the mass integral for the AH manifold.

2.2 Quasi-local mass integral of AH manifolds

We introduce the following quasi-local mass integral for a compact manifold with

boundary, similar to the Brown-York mass. Let (Ω, g) be a three dimensional
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compact manifold with smooth boundary Σ. Assume Σ is homeomorphic to the

standard sphere S2 such that the mean curvature of Σ is positive and the Gaussian

curvature of Σ is larger than −1. Then Σ can be isometrically embedded into the

hyperbolic space H3 by a result of Pogorelov [28] and the embedding is unique

up to an isometry of H3. Consider H3 as the hyperboloid in R3,1

H3 = {(x0, x1, x2, x3) ∈ R3,1 : (x0)2 −
3∑
i=1

(xi)2 = 1, x0 > 0}.

Then the quasi-local mass integral of Ω is defined as:∫
Σ

(H0 −H)X

where H0 is the mean curvature of Σ in H3 and X is the position vector in R3,1.

The motivation of this definition is as follows. In [38], M. T. Wang and Yau

proved that if the scalar curvature of Ω satisfies R ≥ −6, then there is a future

time like vector W such that ∫
Σ

(H0 −H)W

is a future directed non-spacelike vector. W is obtained by solving a backward

parabolic equation with a prescribed data at infinity and is not very explicit.

Later in [35], Shi and Tam proved that if Bo(R1) and Bo(R2) are two geodesic

balls in H3 such that Bo(R1) is contained in the interior of Σ in H3 and Σ is

contained in Bo(R2), where o = (1, 0, 0, 0) ∈ H3 ⊂ R3,1, then the result of Wang-

Yau is true for W (x0, x1, x2, x3) = (αx0, x1, x2, x3) with

α = cothR1 +
1

sinhR1

(
sinh2R2

sinh2R1

− 1

) 1
2

.

Hence W is close to the position vector. It is an open question whether W can

be chosen to be the position vector.

In this chapter, we consider AH manifolds with the following condition (with

the notations as in Definition 2.1):
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Assumption A: ∇Sn−1e,∇2
Sn−1e,∇3

Sn−1e,∇4
Sn−1e with respect to g0 and ∂e

∂r
are

of order O(rn).

Let Sa = {r = a} ⊂ (M, g) and let H to be its mean curvature. We identify

Sr as the standard sphere S2 with metric γr induced from g. Then for r small,

the Gaussian curvature of (Sr, γr) is positive where γr is the induced metric of g.

Our main result is the following:

Theorem 2.3. [20] Let (M, g) be a three-dimensional asymptotically hyperbolic

manifold satisfying Assumption A. For all r sufficiently small, there exists an

isometric embedding X(r) : Sr → H3 ⊂ R3,1 such that

lim
r→0

∫
Sr

(H0 −H)X(r)dµγr =
1

2

(∫
S2

trg0(h)dµg0 ,

∫
S2

trg0(h)xdµg0

)
where H0 is the mean curvature of X(r)(Sr) in H3.

Remark 2.4. From the proof of Theorem 2.3, X(r) in the theorem can be chosen

by applying an isometry of H3 fixing o (i.e. O(3)) on X̃(r), where X̃(r) is an

embedding of Sr (for small r) such that o is the center of a largest geodesic sphere

contained in the interior of X̃(r)(Sr) (or a smallest geodesic sphere containing

X̃(r)(Sr) in its interior).

By applying Theorem 2.2 to our result, we have

Corollary 2.5. Let (M, g) be a three-dimensional asymptotically hyperbolic man-

ifold satisfying Assumption A with the scalar curvature R ≥ −6, if Y (r) : Sr →

H3 ⊂ R3,1 is an isometric embedding such that o is the center of a largest geodesic

sphere contained in the interior of Y (r)(Sr) (or a smallest geodesic sphere con-

taining Y (r)(Sr) in its interior), then for sufficiently small r, the vector∫
Sr

(H0 −H)Y (r)dµγr

is either zero or is future-directed timelike. If (M, g) is not isometric to H3, then

this vector is always non-zero for sufficiently small r.
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Let us give the outline of the coming sections. In Section 2.2.1, we will es-

tablish some estimates for the various curvatures of Sr and its embedding in the

hyperbolic space. In Section 2.2.2, we will describe some basic results in hyper-

bolic geometry concerning the radii of the smallest geodesic sphere enclosing a

given convex surface and of the largest geodesic sphere enclosed by it. In Section

2.2.3, we will normalize the isometric embedding of Sr into the hyperbolic space

so that the image of the isometric embedding of Sr is close to a geodesic sphere

in the hyperbolic space. We then prove the main results in Section 2.2.4.

2.2.1 Curvature estimates

In this section, we always assume (M3, g) is a three dimensional AH manifold

as in Definition 2.1 such that Assumption A is satisfied. Using the notations

in Definition 2.1, let Sa = {r = a} ⊂ M . We want to obtain some curvature

estimates for Sr which will be used in the proof of the main result. First we will

estimate the intrinsic scalar curvature R which is twice the Gaussian curvature

of Sr with the metric γr induced by g.

Lemma 2.6. The scalar curvature R of Sr with respect to the induced metric

from g is given by

R = 2 sinh2 r +O(r5).

Proof. Recall that gr = g0 + r3

3
h+e. Then γr = sinh−2(r)gr is the induced metric

on Sr from g. Let R and R̃ be the scalar curvature of Sr with respect to the

metric γr and gr respectively. It is easy to see that R = sinh2(r)R̃. We claim

that

R̃ = 2 +O(r3). (2.1)

The result immediately follows from this claim.

To prove the claim, let {yi}2
i=1 be the local coordinates on the lower hemisphere

(say) of S2 induced by the stereographic projection from the north pole to the
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plane. Let g̃ij = gr(
∂
∂yi
, ∂
∂yj

), gij = g0( ∂
∂yi
, ∂
∂yj

) and Γ̃kij,Γ
k
ij be the Christoffel

symbols with respect to g̃ij and gij respectively. Let g̃ij and gij be the inverse of

g̃ij and gij respectively. Then

R̃ =
∑
j,k,l

g̃jkR̃l
ljk where R̃l

ijk = ∂iΓ̃
l
jk − ∂jΓ̃lki +

∑
p

Γ̃pjkΓ̃
l
ip −

∑
p

Γ̃pikΓ̃
l
jp, (2.2)

and

2 =
∑
j,k,l

gjkRl
ljk where Rl

ijk = ∂iΓ
l
jk − ∂jΓlki +

∑
p

ΓpjkΓ
l
ip −

∑
p

ΓpikΓ
l
jp. (2.3)

Assumption A implies that

|g̃ij − gij| = O(r3), |g̃ij,k − gij,k| = O(r3) and |g̃ij,kl − gij,kl| = O(r3),

where gij,k =
∂gij
∂yk

etc. Hence

Γ̃kij − Γkij = O(r3) and ∂iΓ̃
l
jk − ∂iΓljk = O(r3). (2.4)

In view of (2.2) and (2.3), these imply that R̃l
ijk − Rl

ijk = O(r3) and hence

R̃ − 2 = O(r3). We conclude that (2.1) is true. This completes the proof of the

lemma.

Next, we want to estimate the mean curvature H of Sr with respect to g.

Lemma 2.7. If (M, g) is asymptotically hyperbolic satisfying Assumption A, then

the mean curvature of Sr is

H = 2 cosh r − 1

2
r3trg0h+O(r4).

Proof. Let {ej}2
j=1 be a local orthonormal frame on (S2, g0). The outer unit

normal of Sr is ν = − sinh r ∂
∂r

. Denote g(ei, ej) by gij and gr(ei, ej) by σij, then

H = ν

(
log
√

det (gij)

)
= − sinh r

∂

∂r

(
log

(
sinh−2 r

√
det (σij)

))
= 2 cosh r − 1

2

sinh r√
det (σij)

∂

∂r
det (σij).
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It is easy to see that det (σij) = 1 + r3

3
trg0h + O(r4) and by the condition ∂e

∂r
=

O(r3), that ∂
∂r

det (σij) = r2trg0h + O(r3). Combining these with the above

calculation, we can get the result.

By Lemma 2.6, for sufficiently small r, the Gaussian curvature K of (Sr, γr)

is positive. Hence (Sr, γr) can be isometrically embedded into H3 which is unique

up to an isometry in H3 by the results of Pogorelov [28]. Moreover, by the Gauss

equation, for an orthonormal frame in Sr,

−1 + χ11χ22 − χ2
12 = K > 0.

Hence the embedded surface which will be denoted by Σr is strictly convex. Let

H0 be the mean curvature of Σr, we want to estimate H0 and compare it with H.

To estimate H0, we will generalize a result on convex compact hypersurfaces

in Rn of Li-Weinstein [22, Theorem 2] to compact hypersurfaces in Hn.

Lemma 2.8. Suppose Σ is a closed convex hypersurface in Hn, n ≥ 3. If the

scalar curvature R of Σ satisfies R+ (n− 2)(n− 3) > 0, then its mean curvature

H0 satisfies the inequality

H 2
0 ≤ max

Σ

(
2R̂2 − 2(n− 1)R̂−∆R

R + (n− 2)(n− 3)

)

where R̂ = R + (n− 1)(n− 2) and ∆ is the Laplacian on Σ.

Proof. We basically follow the ideas from [22]. Let χ be the second fundamental

form of Σ ⊂ Hn. Let p ∈ Σ be such that H0(p) = max
Σ

H0. Let {xj}n−1
j=1 be a

normal coordinates of Σ around p so that χij = λiδij at p. Then at p, H0;ij is

negative semi definite. Here we use S;k to denote the covariant derivative of S on

Σ with respect to the induced metric. Since χij is positive, at p we have,

H0∆H0 =

(∑
i

λi

)(∑
i

H0;ii

)
≤
∑
i

λiH0;ii. (2.5)
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All sums here will have indices from 1 to n− 1. Since Hn has constant curvature,

the Codazzi equation implies

χij;k − χik;j = 0. (2.6)

By the Gauss equation, we have

R + (n− 1)(n− 2) = H2
0 − |χ|2. (2.7)

Let Rijkl be the intrinsic curvature tensor of Σ. At p,

∆R = 2H0∆H0 + 2|∇H0|2 − 2|∇χ|2 − 2
∑
i,k

λiχii;kk

≤ 2
∑
i,k

λi (χkk;ii − χii;kk) (by (2.5) and ∇H0 = 0)

= 2
∑
i,k

λi (χkk;ii − χki;ik) (by (2.6))

= 2
∑
i,k,m

χij(Rkikmχmi +Rkiimχkm) (by Ricci identity and (2.6))

= 2
∑
i,k

Rkiik(−λ2
i + λiλk)

= 2
∑
i,k

(−1 + λkλi)(−λ2
i + λiλk) (by the Gauss equation)

= 2

(
(n− 1)|χ|2 −H0

∑
i

λ3
i −H2

0 + |χ|4
)
.

By [22, Lemma 2], since λi > 0,

−2
∑
i

λ3
i ≤

(∑
i

λi

)3

− 3

(∑
i

λ2
i

)
(
∑
i

λi) = H3
0 − 3|χ|2H0.

Plugging this into the above and use (2.7), at p,

∆R ≤ 2(n− 1)|χ|2 + 3R̂H2
0 − 2H4

0 + 2|χ|4 − 2H2
0

= 2(n− 1)(H2
0 − R̂) + 3R̂H2

0 − 2H4
0 + 2(H2

0 − R̂)2 − 2H2
0

= −(R̂− 2(n− 2))H2
0 − 2(n− 1)R̂ + 2R̂2.

From this it is easy to see that the lemma is true.
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Applying the previous lemma to Σr which is the embedded image of (Sr, γr),

we have:

Corollary 2.9. With the same assumptions and notations as in Lemma 2.6, for

sufficiently small r, the mean curvature H0 of Σr in H3 satisfies

H 2
0 ≤ max

Sr
(2R + 4− ∆R

R
)

where ∆ is the Laplacian on Sr under the induced metric, R = 2K and K is the

Gaussian curvature of Sr.

We now estimate H0.

Lemma 2.10. The mean curvature H0 of Σr in H3 is given by

H0 = 2 cosh r +O(r5).

Proof. By the Gauss equation, 2R̂ ≤ R̂ + |χ|2 = H2
0 where R̂ = R + 2 and χ is

χ is the second fundamental form of the embedded Sr. So by combining Lemma

2.6 and Corollary 2.9, we have

4 cosh2 r +O(r5) ≤ H2
0 ≤ 4 cosh2 r + max

Sr

∣∣∣∣∆RR
∣∣∣∣+O(r5).

The proof would be completed if we can show that ∆R
R

= O(r5). The proof is

analogous to that of Lemma 2.6. Using the notations in the proof of Lemma 2.6,

it is easy to see that
∆R

R
=

sinh4 r

R
∆grR̃ (2.8)

where R̃ is the scalar curvature with respect to gr. Using Assumption A, we have

|∂(k)Γ̃lij − ∂(k)Γlij| = O(r3) for k = 0, 1, 2, 3,

with respect to the coordinates {yi}2
i=1. Together with (2.2) and (2.3), we con-

clude that ∂iR̃− ∂iR = O(r3) and ∂2
ijR̃− ∂2

ijR = O(r3). Hence

∆grR̃−∆g0R0 = O(r3).

As R0 = 2 is a constant, by (2.8) and Lemma 2.6, the result follows.
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Combining Lemma 2.7 and Lemma 2.10, we have

Corollary 2.11. On Sr,

H0 −H =
1

2
r3trg0h+O(r4).

2.2.2 Inscribed and circumscribed geodesic spheres

It is well known that a compact convex hypersurface Σ in Rn can contain and be

contained in spheres with radius depending only on the upper and lower bound

of principal curvatures λi. In this section, we will describe the corresponding

results in Hn, which will be used later. We will sketch the proofs for the sake

of completeness whenever we could not locate a reference. We only consider the

case n = 3. The general case is similar. The following is a direct consequence of

a result of Ralph Howard [17, Theorem 4.5].

Proposition 2.12. Let Σ be a compact convex surface in H3 and coth b =

max
x∈Σ

λi(x) ≥ min
x∈Σ

λi(x) > 1, then there is a geodesic sphere of radius b which

is contained in the interior of Σ.

Proof. By [17, Theorem 4.5], since λi > 1 on Σ, the largest radius (rolling radius)

of geodesic balls which can roll inside Σ is equal to the focal distance of Σ.

We claim that the focal distance of Σ in H3 is equal to

min
x∈Σ
{ρ : coth ρ = λi(x), i = 1, 2}.

The result then immediately follows.

To prove the claim, we use the following characterization of the focal distance

in terms of Jacobi field ([17] p. 474). For p ∈ Σ, a Σ-adapted Jacobi field V (s)

along the inward-pointing arc-length parametrized geodesic γ(s) starting from p

is one which satisfies

V ′′ +R(V, γ′)γ′ = 0, V (0) ∈ TpΣ, V ′(0) = −A(V (0))
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where V (k) = ∇(k)
γ′ V and A is the shape operator. For such a V 6= 0, γ(l) is a

focal point of Σ along γ if V (l) = 0. If γ(l) is the first focal point along γ, the

focal distance at p is then l and the focal distance of Σ is the minimum of the

focal distances among all p ∈ Σ.

Now, if e is an unit eigenvector of Ap with eigenvalue λ, we can then parallel

translate e along γ(s) to form e(s). We define V (s) = (cosh s − λ sinh s)e(s).

Then

V ′′ = V and R(V, γ′)γ′ = −〈γ′, γ′〉V + 〈V, γ′〉γ′ = −V.

Thus V ′′ +R(V, γ′)γ′ = 0. Also, V ′(0) = −λe(0) = −A(e), V (0) ∈ TpΣ. i.e. V is

a Σ-Jacobi field. As V (r) = 0 where coth r = λ, γ(r) is a focal point.

Conversely, if γ(l) is a focal point with the corresponding Σ-adapted Jacobi

field V (s). Then by the Jacobi field equation, 〈V, γ′〉′′ = 0. The conditions of V

implies 〈V (0), γ′(0)〉 = 0 = 〈V (l), γ′(l)〉, so we have

〈V, γ′〉 ≡ 0.

Then

0 = V ′′ +R(V, γ′)γ′ = V ′′ − (〈γ′, γ′〉V − 〈V, γ′〉γ′) = V ′′ − V.

Let {ei}2
i=1 be the unit eigenvectors of Ap with eigenvalues λi, we can then parallel

translate ei along γ(s) to form ei(s). Let V (s) =
2∑
i=1

fi(s)ei(s), then the above

equation implies

f ′′i = fi or, fi = ai sinh s+ bi cosh s.

But then V ′(0) =
2∑
i=1

aiei = −A(V (0)) = −
2∑
i=1

biλiei. So ai = −biλi for all i.

Finally V (l) = 0 implies bi cosh l = biλi sinh l. Therefore we have either bi = 0 or

coth l = λi. We conclude that V is of the form V (s) = (cosh s− λi sinh s)e(s) for

some i and for some parallel e(s). From this we can see that the claim is true.

For circumscribed geodesic spheres of Σ, we have the following:
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Proposition 2.13. Let Σ be a closed convex surface in H3 with λi > coth a > 1

on Σ, then there is a geodesic sphere of radius a which contains Σ in its interior.

Since we cannot find an explicit reference for this, we will give more details of

the proof. We use the idea of Andrejs Treibergs [37] to give a proof. To show this,

we need the following lemma about convex curves on H2 which is an extension of

Schur’s theorem for plane curves.

Lemma 2.14. Let α and β be two curves in H2 with same length l parametrized

by arc length. Suppose let γ be the geodesic from α(0), α(l) and σ be the geodesic

from β(0) to β(l). Suppose α and γ bounds a geodesically convex region, and β,

σ bounds a geodesically convex region. Suppose the geodesic curvature k of α is

larger than the geodesic curvature k̃ of β which are assumed to be positive. Then

length of γ is less than the length of σ.

Proof. Let us use the right half plane model for H2:

H2 = {(x, y) ∈ R2| x > 0}

with metric ds2 = dx2+dy2

x2 . We may assume that γ is given by γ(t) = (t, c),

a ≤ t ≤ b and c is a constant. We also assume that α is below γ. That is, if

α(s) = (x(s), y(s)), then y(s) ≤ c. We may assume that α touches the geodesic

(t, c′) for some c′ at α(s0) some 0 < s0 < l. Then α lies between the geodesics

y = c and y = c′. Move β such that β(s0) = α(s0), β(s0) touches y = c′ at β(s0)

and β lies above y = c′; i.e., β is in the region y ≥ c′.

Let α(s) = (x(s), y(s)) and β(s) = (x̃(s), ỹ(s)). Let θ(s) be the oriented angle

from the tangent of the geodesic (t, y(s)) to α′(s). Define θ̃(s) for β similarly so

that θ(s0) = θ̃(s0) = 0.

Note that for any l > s > s′ > s0, y(s) 6= y(s′), otherwise the curve (t, y(s))

is part of α which is a geodesic. This is impossible, because k > 0. Hence y is

increasing in (s0, l). So

x′ = x cos θ, y′ = x sin θ. (2.9)
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Hence sin θ ≥ 0. But for s0 < s < l, if sin θ(s) = 0, then the geodesic (t, y(s)) is

tangent to α, which is impossible because of convexity of the region bounded by

α and γ. So sin θ > 0, there.

On the other hand, we have [10, p. 253]:

k = − sin θ + θ′.

Hence 0 < θ ≤ π on (s0, l). Similarly, we have

k̃ = − sin θ̃ + θ̃′.

Since k > k̃ and θ(s0) = θ̃(s0) = 0, so for s > s0 near s0, θ(s) > θ̃(s). Suppose

there is a first l > s1 > s0 such that θ(s1) = θ̃(s1). Then at s1,

k − k̃ = θ′(s1)− θ̃′(s1) ≤ 0.

This is impossible. Hence 0 ≤ θ̃(s) ≤ θ(s) ≤ π in (s0, l).

Now

log x(l)− log x(s0) =

∫ l

s0

x′

x
ds =

∫ l

s0

cos θ(s)ds

and

log x̃(l)− log x̃(s0) =

∫ l

s0

x̃′

x̃
ds =

∫ l

s0

cos θ̃(s)ds

Hence log x̃(l) ≥ log x(l) = log b. Similarly, one can prove that log x̃(0) ≤

log x(0) = log c. In particular, x̃(0) < x̃(l). Now the length L(γ) of γ is log b−log c.

Hence L(γ) ≤ log x̃(l)− log x̃(0).

We claim that log x̃(l)− log x̃(0) ≤ L(σ). We may assume ỹ(0) < ỹ(l). Then

log x̃(l)− log x̃(0) is the length of the geodesic (t, ỹ(l)), x̃(0) < t < x̃(l). Then by

the sine law in H2, we conclude that the claim is true. This completes the proof

of the lemma.

Lemma 2.15. Let α be a closed geodesically convex curve in H2 with geodesic

curvature kα > r > 0. Let β be a geodesic circle with geodesic curvature r.

Suppose α and β are tangent at p such that α and β lie on the same side of the

geodesic through p and tangent to α and β. Then α will lie inside β.
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Proof. We use the disk model for H2. We may assume that β is a Euclidean circle

with center at the origin and with radius a > 0, say. We may also assume that

p = (0,−a) and β is parametrized by (a cos θ, a sin θ), −π ≤ θ ≤ π. It is easy to

see that β(θ) is outside α near p, for θ ∈ (−π
2
− θ0,−π

2
+ θ0) = I for some θ0 > 0.

Suppose the lemma is not true. Then β will intersect α at some θ1 /∈ I. Without

loss of generality, we may assume that there is π
2
≥ θ1 ≥ −π

2
+θ0, such that α and

β intersects at q = β(θ1) and β(θ) lies strictly outside α in (−π
2

+ θ0, θ1). Then

the length of β from p to q is strictly larger than the length of α from p to q by the

Gauss-Bonnet theorem and the fact that kα > r. Then there is θ1 > θ2 > −π
2

+θ0

such that the length of β from p to u = β(θ2) is the same as the length of α from

p to q. By Lemma 2.14, we conclude that d(p, q) ≤ d(p, u). Since p, q, u are on

the geodesic circle β, this is impossible by the cosine law in H2.

Proof of Proposition 2.13. Let p ∈ Σ. Let S be the geodesic sphere with radius a

which is tangent to Σ at p with the same unit outward normal at p. Let P be any

normal section. That is, P is the totally geodesic H2 which passes through p and

contains the geodesic normal to Σ (and S) at p. Let γ = P ∩ Σ and β = P ∩ S.

Since the principal curvature of Σ is larger than coth a, γ is a closed convex

curve in P with geodesic curvature larger than coth a. β is a geodesic circle of

radius a in P . By Lemma 2.15, γ lies inside β and hence is inside S. Since P is

an arbitrary normal section, the result follows.

2.2.3 Normalized embedding of (Sr, γr)

Let (M3, g) be an AH manifold satisfying Assumption A. Let (Sr, γr) be as in

Lemma 2.6. The isometric embedding of (Sr, γr) is unique up to an isometry of

H3. In order to prove the main results, we have to normalize the embedding. As

a first step, using Lemmas 2.6 and 2.9, we can apply Propositions 2.12 and 2.13

to obtain the following:
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Lemma 2.16. With the above assumptions and notations, we can find a positive

constant C such that for each small r, if Σr is the isometric embedding of (Sr, γr)

in H3, then there exist geodesic balls Bin and Bout with the same center and radii

ρin and ρout respectively, such that Bin is in the interior of Σr, Bout contains Σr

and ρin, ρout satisfy:

ρin ≥ σ − Cr3, ρout ≤ σ + Cr3, (2.10)

where σ = σ(r) > 0 is given by sinhσ = 1
sinh r

.

Proof. Let r be a fixed small number. Let λj(x) be the principal curvatures of

x ∈ Σr. By Lemmas 2.6 and 2.10 and the Gauss equation, it is easy to see that

λj = cosh r +O(r5). (2.11)

Let coth ρ = λj, then

ρ =
1

2
log(

λj + 1

λj − 1
) =

1

2
log(

cosh r + 1 +O(r5)

cosh r − 1 +O(r5)
) =

1

2
log(

cosh r + 1

cosh r − 1
) +O(r3)

=σ +O(r3).

From this and Propositions 2.12 and 2.13, it is easy to see the corollary is true.

By Lemma 2.16, the first normalization of the embedding is to normalize such

that the center of the geodesic balls in Lemma 2.16 is at a fixed point o ∈ H3. We

will use geodesic polar coordinates (σ, y) with center at o, where σ is the geodesic

distance from o and y ∈ S2 so that a point in H2 is of the form expo(σy). The

metric gH2 is given by dσ2 + sinh2 σ g0 where g0 is the standard metric on S2.

The isometric embedding X(r) is given by X(r)(x) = expo(σ
(r)(x)y(r)(x)).

Lemma 2.17. With the above notations, there exists a constant C > 0 such that

for all r small enough,∣∣dS2(x1, x2)− dS2

(
y(r)(x1), y(r)(x2)

)∣∣ ≤ Cr3

for x1, x2 ∈ S2, where dS2 is the distance on S2 with respect to the standard metric.
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Proof. Let x1, x2 ∈ S2 and let X(r) as above so that the embedded image Σr lies

between two concentric geodesic spheres ∂Bo(R1) and ∂Bo(R2) with center at o

and with radii R1 > R2 such that Ri = σ + O(r3), i = 1, 2, and σ is given by

sinhσ = 1
sinh r

, by Lemma 2.16. Here and below O(rk) will denote a quantity

with absolute value bounded by Crk for some positive constant C independent

of r and x1, x2 ∈ S2.

Let l(x1, x2) be the intrinsic distance between x1, x2 ∈ Sr with respect to the

metric γr. By the definition of AH manifold, it is easy to see that

l(x1, x2) =
1

sinh r
dS2(x1, x2)

(
1 +O(r3)

)
. (2.12)

On the other hand, let v1, v2 be the points of intersections of ∂Bo(R2) with the

geodesics from o to X(r)(x1) and X(r)(x2) respectively. Since X(r) is an isometric

embedding, the intrinsic distance between X(r)(x1) and X(r)(x2) in Σr is equal

to l(x1, x2). Since Σr is strictly convex in H3 by (2.11) and Ri = σ + O(r3), we

have

l(x1, x2) ≤ d∂Bo(R2)(v1, v2) +O(r3)

because l(x1, x2) is the minimum of lengths of curves in H3 outside Σr which

join X(r)(x1) and X(r)(x2). Here d∂Bo(R2) is the intrinsic distance function on

∂Bo(R2). So we have

l(x1, x2) ≤ sinhσdS2

(
y(r)(x1), y(r)(x2)

)
+O(r2).

Using the fact that ∂Bo(R1) is also strictly convex, one can prove similarly,

l(x1, x2) ≥ sinhσdS2

(
y(r)(x1), y(r)(x2)

)
+O(r2).

Combining these two inequalities we have:

l(x1, x2) = sinh σdS2

(
y(r)(x1), y(r)(x2)

)
+O(r2). (2.13)

By (2.12), (2.13) and the fact that sinhσ = 1
sinh r

, the result follows.

Let X(r) be the isometric embeddings normalized as above.
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Lemma 2.18. With the above notations, by composing X(r) with isometries of

H3 fixing o, and the resulting isometric embeddings still denoted by X(r), we have:

lim
r→0

y(r)(x) = x, x ∈ S2.

The convergence is uniform in x.

Proof. x ∈ S2 is of the form x = (x1, x2, x3) with
∑
i

(xi)2 = 1. Let e1 = (1, 0, 0),

e2 = (0, 1, 0) and e3 = (0, 0, 1). By composing with isometries of H3 fixing o, we

may arrange that for all r

y(r)(e1) = e1, y
(r)(e2) ∈ {x3 = 0, x2 ≥ 0}, y(r)(e3) ∈ {x3 ≥ 0}. (2.14)

By Lemma 2.17,

dS2(yr(e2), e1) = dS2(yr(e2), y(r)(e1)) = dS2(e2, e1) +O(r3).

By (2.14), we can conclude that lim
r→0

y(r)(e2) = e2. For any rn → 0 such that

y(rn)(e3)→ a = (a1, a2, a3) with a3 ≥ 0. Then by Lemma 2.17 again, we have

dS2(e1, a) = dS2(e2, a) =
π

2
.

Hence a = e3. This implies that lim
r→0

y(r)(e3) = e3. That is, we have

lim
r→∞

y(r)(ei) = ei, for 1 ≤ i ≤ 3. (2.15)

Now for any x ∈ S2 and rn → 0 such that lim
n→∞

y(rn)(x) = b. Then by (2.15)

and Lemma 2.17, we have

dS2(ei, b) = dS2(ei, x), for 1 ≤ i ≤ 3.

Hence b = x and so lim
r→0

y(r)(x) = x for all x ∈ S2.

We claim that the convergence is uniform. Fix x0 ∈ S2 for any ε > 0, by

Lemma 2.17, let C be the constant in the lemma, for any x ∈ S2 with dS2(x, x0) <

ε, we have

dS2(y(r)(x), x) ≤dS2(y(r)(x), y(r)(x0)) + dS2(y(r)(x0), x0) + dS2(x0, x)

≤2dS2(x0, x) + dS2(y(r)(x0), x0) + Cr3

≤3ε
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provided r is small enough depending only on x0 and ε. Since S2 is compact, this

proves the claim that the convergence is uniform.

2.2.4 Proof of Theorem 2.3

We now prove our main results. First, we embed H3 in the R3,1 so that H3 =

{(x0, x1, x2, x3) ∈ R3,1 : (x0)2 −
3∑
i=1

(xi)2 = 1, x0 > 0} and the fixed point o in

Section 2.2.3 is mapped to the point (1, 0, 0, 0).

Proof of Theorem 2.3. For r small, let X(r) be the embedding of (Sr, γr) in H3

given by Lemma 2.18. With the notations as in section 2.2.3, when considered

as an embedding of (Sr, γr) in R3,1, X(r) is of the form

X(r)(x) = (cosh σ(r)(x), sinhσ(r)(x) y(r)(x)). (2.16)

Now by Corollary 2.11, Lemmas 2.16 and 2.18, we have as r → 0,

H0 −H = r3

2
trg0h+O(r4),

coshσ(r)(x) = coth r +O(r2) = 1
r

+ o(1),

sinhσ(r)(x) = 1
sinh r

+O(r2) = 1
r

+ o(1),

y(r)(x) = x+ o(1).

(2.17)

As before, O(rk) represents a quantity with absolute value bounded by Crk with

C being independent of r and x. Moreover, by Definition 2.1, the volume form

dµγr =

(
1

sinh2 r
+O(r3)

)
dµg0 = (

1

r2
+ o(1))dµg0 (2.18)

as r → 0, where dµg0 is the volume form of the standard metric g0. By (2.17)
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and (2.18), we have∫
Sr

(H0 −H)X(r)dµγr

=

∫
Sr

(H0 −H)
(
coshσ(r), sinhσ(r) y(r)

)
dµγr

=

∫
S2

(
(
r3

2
trg0h+O(r4))

(
1

r
+ o(1),

x

r
+ o(

1

r
)

)
(

1

r2
+ o(1))

)
dµg0

=
1

2

(∫
S2

trg0(h)dµg0 ,

∫
S2

trg0(h)xdµg0

)
+ o(1).

From this the theorem follows.

Proof of Corollary 2.5. Under the assumptions of the corollary, suppose (M, g)

is not isometric to H3, then by [40, Theorem 2.5], or Theorem 2.2,∫
S2

trg0(h)dµg0 >

∣∣∣∣∫
S2

trg0(h)xdµg0

∣∣∣∣ .
Let X(r) be the isometric embedding of (Sr, γr) as in Theorem 2.3, then by the

theorem there exists ε > 0 such that if r is small enough then for any future null

vector η = (1, ξ), ∣∣∣∣∫
Sr

(H0 −H)〈X(r), η〉R3,1dµγr

∣∣∣∣
R3,1

≤ −ε.

Hence
∫
Sr

(H0 − H)X(r)dµγr is timelike and is future directed. From this and

Remark 2.4, it is easy to see that the corollary is true.



Chapter 3

Positivity of quasi-local mass

The positive mass theorem states that for an asymptotically flat manifold (M, g)

such that g behaves like Euclidean at infinity near each end and suppose its

scalar curvature is non-negative, then its ADM mass of each end is non-negative,

moreover if the ADM mass of one of the end is zero, then (M, g) is actually a

Euclidean space. Schoen and Yau [31, 32] proved the positive mass theorem.

Witten [41] (see also [26, 3]) gave a simplified proof the positive mass theorem

using the spinor method. Since then the method of spinor has been adopted by

many people to prove positive mass type theorems or some rigidity results, see

for example [34, 1, 23, 38].

In particular, let us look at some results in this direction. M. T. Wang and Yau

[38] developed a quasi-local mass for a three dimensional manifold with boundary

whose scalar curvature is bounded from below by some negative constant. Using

spinor method, they were able to prove that this mass is non-negative. Later

on, Shi and Tam [35] also proved a similar result in the three dimensional case,

but with a simpler definition of the mass. In this chapter, we will show that the

results of Wang-Yau and Shi-Tam also hold in higher dimensions.

In [35], Shi and Tam proved the following:

Theorem 3.1. ([35] Theorem 3.1) Let (Ω, g) be a compact 3-dimensional ori-

43
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entable manifold with smooth boundary Σ = ∂Ω, homeomorphic to a 2-sphere.

Assuming the following conditions:

1. The scalar curvature R of (Ω, g) satisfies R > −6k2 for some k > 0,

2. Σ is a topological sphere with Gaussian curvature K > −k2 and mean

curvature H > 0, so that Σ can be isometrically embedded into H3
−k2 with

mean curvature H0.

Then there is a future directed time-like vector-valued function W on Σ such that

the vector ∫
Σ

(H0 −H)WdΣ

is time-like. Here W = (x1, x2, x3, αt) for some α > 1 depending only on the

intrinsic geometry of Σ, with X = (x1, x2, x3, t) ∈ H3
−k2 ⊂ R3,1.

In this chapter, we will prove the analogous result in higher dimension for spin

manifolds (note that three dimensional orientable manifolds are spin). There are

two ingredients which are most important in establishing the main result (The-

orem 3.16), one is a monotonicity formula (Lemma 3.6) for the mass expression,

the other is a positive mass type theorem (Theorem 3.7). This theorem was orig-

inally proved by M.T. Wang and Yau [38] in the three dimensional case. Here we

will give a proof in general dimension. In particular, the existence of the Killing

spinor fields play an important role in the proof. What is new in the proof of the

theorem in higher dimension are two identities involving Killing spinors on the

hyperbolic space (Proposition 3.10, 3.9).

This chapter is organized as follows. In Section 3.1, we will first state and

prove some preliminary results. In Section 3.2, we will give the proof of a positive

mass theorem in general dimension. In Section 3.3, we will then give our main

result.
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3.1 Preliminaries

In this section, we will state and prove some preliminary results. The setup is as

follows.

Let (Ω, g) be a compact n-dimensional manifold with smooth boundary Σ =

∂Ω, homeomorphic to a (n − 1)-sphere. Suppose the scalar curvature R of Ω

satisfies R ≥ −n(n − 1)k2 for some k > 0. Let H be the mean curvature of

Σ with respect to the outward normal. We assume H is positive, the sectional

curvature of Σ is greater than −k2 and Σ can be isometrically embedded uniquely

into Hn
−k2 , the hyperbolic space of constant sectional curvature −k2. We use the

following hyperboloid model for Hn
−k2 :

Hn
−k2 =

{
(x1, · · · , xn, t) ∈ Rn,1 |

n∑
i=1

x2
i − t2 = − 1

k2
, t > 0

}
(3.1)

where Rn,1 is the Minkowski space with Lorentz metric
n∑
i=1

dx2
i−dt2. The position

vector of Hn
−k2 in Rn,1 can be parametrized by

X = (x1, · · · , xn, t) =
1

k
(sinh(kr)Y, cosh kr) (3.2)

where Y ∈ Sn−1, the unit sphere in Rn. Note that r is the geodesic distance of a

point from o = (0, · · · , 0, 1/k) ∈ Hn
−k2 . Without loss of generality we can assume

that Σ0, the embedded image of Σ, encloses a region Ω0 which contains o.

Let Σρ be the level surface outside Σ0 in Hn
−k2 with distance ρ from Σ0.

Suppose F : Σ → Hn
−k2 is the embedding with unit outward normal N , then Σρ

as a subset of Rn,1 is given by ([35] Equation (2.2))

X(p, ρ) = cosh(kρ)X(p, 0) +
1

k
sinh(kρ)N(p, 0). (3.3)

Here for simplicity, (p, ρ) denotes a point Σρ which lies on the geodesic perpen-

dicular to Σ0 starting from the point p ∈ Σ0 and X(p, 0) = X(F (p)).

On Hn
−k2 \ Ω0, the hyperbolic metric can be written as

g′ = dρ2 + gρ, (3.4)
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where gρ is the induced metric on Σρ. As in [38], we can perturb the metric to

form a new metric on Hn
−k2 \ Ω0

g′′ = u2dρ2 + gρ (3.5)

(note that the induced metrics from g′ and g′′ on Σρ are the same) with prescribed

scalar curvature −n(n− 1)k2, where u satisfies ([38] Equation 2.10):
2H0

∂u

∂ρ
= 2u2∆ρu+ (u− u3)(Rρ + n(n− 1)k2),

u(p, 0) =
H0(p, 0)

H(p)
.

(3.6)

Here ∆ρ is the Laplacian on Σρ, R
ρ is the scalar curvature of Σρ, H0(p, ρ) is

the mean curvature of Σρ in (Hn
−k2 , g′) and H(p) is the mean curvature of ∂Ω in

(Ω, g). The mean curvature of Σρ with respect to the new metric g′′ is then

H(p, ρ) =
H0(p, ρ)

u(p, ρ)
. (3.7)

We have the following estimates:

Lemma 3.2 (cf. [38] p. 255-257). 1. For all ρ, e−2kρgρ is uniformly equiva-

lent to the standard metric on Sn−1. Indeed, we can choose a coordinates

around any p ∈ Σ such that gab(p, ρ) = fδab, where f = sinh2(k(µa +

ρ))/ sinh2(kµa), e
2kρ or cosh2(k(µa+ρ))/ cosh2(kµa) and λa(p, 0) = k coth(kµa), k

or k tanh(kµa) is the initial principal curvature.

2. Let dΣρ denotes the volume element of Σρ, then e−(n−1)kρdΣρ is uniformly

equivalent to the volume element dSn−1 of Sn−1.

3. The principal curvatures of Σρ with respect to g′ is of order λa(p, ρ) =

k(1 +O(e−2kρ)), and therefore H0 = (n− 1)k +O(e−2kρ).

4. |u− 1| ≤ Ce−nkρ for some C > 0 independent of ρ.

We also have the following long time existence result:
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Proposition 3.3 (cf. [38] Theorem 2.1). 1. The solution u of (3.6) exists for

all time and v = lim
ρ→∞

enkρ(u− 1) exists as a smooth function on Σ.

2. g′′ = u2dρ2 + gρ is asymptotically hyperbolic [1] on M = Hn
−k2 \ Ω0 with

scalar curvature −n(n− 1)k2.

3. Let A : (TM, g′)→ (TM, g′′) be the Gauge transformation defined by A ∂
∂ρ

=

1
u
∂
∂ρ

and AV = V for any vector V ∈ TΣρ, then |A− Id|g′ = O(e−nkρ) and

|∇′A|g′ = O(e−nkρ).

Since the proofs of the above two results are exactly the same as in [38] except

some minor modification, we omit them here.

Lemma 3.4. (cf. [35] Lemma 3.4) On Hn
−k2 \ Ω0,

H0
∂X

∂ρ
+ ∆ρX − (n− 1)k2X = 0.

Proof. Under the representation in (3.2) in Hn
−k2 , the Laplacian in Hn

−k2 is given

by

∆Hn
−k2

=
∂2

∂ρ2
+ (n− 1)k coth kr

∂

∂ρ
+ k2 sinh−2 kr∆Sn−1 .

By ∆Sn−1Y = −(n− 1)Y for Y ∈ Sn−1 and (3.2), ∆Hn
−k2
X = nk2X.

On the other hand, under the foliation by Σρ, the ∆Hn
−k2

is given by

∆Hn
−k2

=
∂2

∂ρ2
+H0

∂

∂ρ
+ ∆ρ

where ∆ρ is the Laplacian on Σρ. So using (3.3),

nk2X =
∂2

∂ρ2
X +H0

∂

∂ρ
X + ∆ρX = k2X +H0

∂

∂ρ
X + ∆ρX.

Let B0(R1) and B0(R2) be geodesic balls in Hn
−k2 such that B0(R1) ⊂ D ⊂

B0(R2). We define W = (x1, x2, · · · , xn, αt) with

α = coth kR1 +
1

sinh kR1

(
sinh2 kR2

sinh2 kR1

− 1

) 1
2

,
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where X = (x1, x2, · · · , xn, t) is the position vector of Σρ in Rn,1.

By the same argument we have

Lemma 3.5. On Hn
−k2 \ Ω0, H0

∂W
∂ρ

+ ∆ρW − (n− 1)k2W = 0.

Lemma 3.6. (cf. [35] Equation 3.8) On Hn
−k2 \ Ω0,

d

dρ

(∫
Σρ

(H0 −H)XdΣρ

)

=−
∫

Σρ

u−1(u− 1)2

((
Rρ + (n− 1)(n− 2)k2

) X
2

+H0
∂X

∂ρ

)
dΣρ.

Proof. By (3.6) and the divergence theorem,

d

dρ

(∫
Σρ

(H0 −H)XdΣρ

)

=
d

dρ

(∫
Σρ

H0(1− u−1)XdΣρ

)
=

∫
Σρ

(
∂H0

∂ρ
(1− u−1)X +H0u

−2∂u

∂ρ
X +H0(1− u−1)

∂X

∂ρ

+H2
0 (1− u−1)X)dΣρ

=

∫
Σρ

((
∂H0

∂ρ
+H2

0 )(1− u−1)X

+

(
∆ρu+

1

2
(u−1 − u)(Rρ + n(n− 1)k2)

)
X +H0(1− u−1)

∂X

∂ρ
)dΣρ

=

∫
Σρ

((
∂H0

∂ρ
+H2

0 )(1− u−1)X +
1

2
(u−1 − u)(Rρ + n(n− 1)k2)X

+H0(1− u−1)
∂X

∂ρ
+ (u− 1)∆ρX)dΣρ

=

∫
Σρ

(I + II + III + IV )dΣρ

(3.8)

where we have used (3.6) in line 4 and divergence theorem in line 5. The Gauss

equation gives

Rρ = −(n− 1)(n− 2)k2 +H2
0 − |A|2 (3.9)

where A is the second fundamental form of Σρ with respect to the hyperbolic

metric g′. By the evolution equation of H0 ([38] Equation 2.4) and the Gauss
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equation (3.9),

∂H0

∂ρ
= −|A|2 + (n− 1)k2 = Rρ + (n− 1)2k2 −H2

0 .

So I = (Rρ + (n− 1)2k2)(1− u−1)X.

Direct calculation gives

(Rρ + (n− 1)2k2)(1− u−1) +
1

2
(u−1 − u)(Rρ + n(n− 1)k2)

=− 1

2
u−1(u− 1)2(Rρ + (n− 1)(n− 2)k2)− (n− 1)(u− 1)k2.

So we have

I + II = (−1

2
u−1(u− 1)2

(
Rρ + (n− 1)(n− 2)k2

)
− (n− 1)(u− 1)k2)X.

By lemma 3.4, ∆ρX − (n− 1)k2X = −H0
∂X
∂ρ

. Therefore

I + II + III + IV

=− 1

2
u−1(u− 1)2

(
Rρ + (n− 1)(n− 2)k2

)
X

+ (u− 1)

(
H0

u

∂X

∂ρ
+ ∆ρX − (n− 1)k2X

)
=− 1

2
u−1(u− 1)2

(
Rρ + (n− 1)(n− 2)k2

)
X + (u− 1)(u−1 − 1)H0

∂X

∂ρ

=− u−1(u− 1)2

((
Rρ + (n− 1)(n− 2)k2

) X
2

+H0
∂X

∂ρ

)
.

This together with (3.8) gives the result.

3.2 A Positive mass theorem

We will need the following positive mass theorem ([38] Theorem 6.1) which was

proved by M.T. Wang and Yau when n = 3.

Theorem 3.7 (Wang-Yau). Let n ≥ 3 and (Ω, g) is a n-dimensional compact spin

manifold with nonempty smooth boundary which is a topological sphere. Suppose

the scalar curvature R of Ω satisfies R ≥ −n(n − 1)k2, the sectional curvature
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of its boundary Σ satisfies K > −k2, the mean curvature of the boundary with

respect to outward unit normal is positive, and Σ can be isometrically embedded

uniquely into Hn
−k2 in Rn,1. Then

lim
ρ→∞

∫
Σρ

(H0 −H)X · ζ ≤ 0

for any future-directed null vector ζ in Rn,1, where H0, H are functions in (p, ρ)

as in (3.7)

In other words, lim
ρ→∞

∫
Σρ

(H0 −H)XdΣρ is a future-directed non-spacelike vector.

As a corollary,

Corollary 3.8. With the same assumptions as in Theorem 3.7,

lim
ρ→∞

∫
Σρ

(H0 −H) cosh krdΣρ ≥ 0

where r is defined in (3.2).

3.2.1 Killing spinors on (Hn
−k2, g′)

The proof of Theorem 3.7 requires the existence of Killing spinor fields (i.e. a sec-

tion of the spinor bundle (see for example [21]) S(Hn
−k2 , g′) satisfying the Killing

equation (3.10)) on the hyperbolic space. A Killing spinor φ′ on (Hn
−k2 , g′) satisfies

the equation

∇′V φ′ +
√
−1

2
kc′(V )φ′ = 0 for any tangent vector V (3.10)

where c′(V ) is the Clifford multiplication by V and ∇′ is the spin connection

(with respect to the hyperbolic metric g′). The Killing spinors on hyperbolic

spaces were studied by Baum [5]. Baum proved that on Hn
−k2 , the set of all

Killing spinors is parametrized by a ∈ C2m , m = bn
2
c (integer part of n

2
). We

need the following two propositions.
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Proposition 3.9. Let φ′a,0 be the Killing spinor on (Hn
−k2 , g′), corresponding to

a ∈ C2m, m = bn
2
c, then

|φ′a,0|2g′ = −2kX · ζa

where · denotes the Lorentz inner product in Rn,1 and

ζa =
n∑
j=1

〈
√
−1c(ej)a, a〉ej − 〈

√
−1c(e0)a, a〉e0. (3.11)

Here 〈, 〉 is the inner product in C2m, c(ej) denotes the Clifford multiplication by

the Clifford matrices (as defined in [5]) for the orthonormal basis ∂
∂t

= e0,
∂
∂xj

= ej

in Rn,1 (1 ≤ j ≤ n) and c(e0) is defined to be


√
−1

. . .
√
−1

.

Proof. Let k = 1 for simplicity. Baum ([5, Theorem 1], µ = −k
2
) proved that

in the ball model for Hn, the Killing spinor can be expressed as (note that the

spinor bundle is trivial)

φ = φ′a,0(x) =

√
2

1− |x|2
(a−

√
−1c(x)a)

where c(x)a =
n∑
j=1

xjc(ej)a for x = (x1, · · · , xn). It is easily computed that

|φ|2 = 2

(
1 + |x|2

1− |x|2
|a|2 − 2

1− |x|2
〈
√
−1c(x)a, a〉

)
.

The change of coordinates from the ball model to the hyperboloid model is given

by

X = (
2x

1− |x|2
,

1 + |x|2

1− |x|2
) ∈ Rn,1.

So

−2X · ζa = −4
n∑
j=1

xj
1− |x|2

〈
√
−1c(ej)a, a〉+ 2

1 + |x|2

1− |x|2
|a|2

= 2

(
1 + |x|2

1− |x|2
|a|2 − 2

1− |x|2
〈
√
−1c(x)a, a〉

)
= |φ|2.
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Proposition 3.10. For every null vector ζ ∈ Rn,1 (n ≥ 2), ζ = ζa for some

a ∈ C2m, where m = bn
2
c and ζa is defined in (3.11).

Proof. Define ηa =
n∑
j=1

〈
√
−1c(ej)a, a〉ej. As ζa =

n∑
j=1

〈
√
−1c(ej)a, a〉ej + |a|2e0, it

suffices to prove that for any X ∈ Sn−1 ⊂ Rn, there exists a ∈ C2m with |a| = 1

such that ηa = X. We divide into two cases: (i) n is odd and (ii) n is even.

(i) For the odd case where n = 2m + 1, we apply induction on m. When

2m + 1 = 3, this is done in [38] (p.17). We state it here for later use. The three

Clifford matrices for n = 3 are g1, g2 and
√
−1T (see [5, p. 206]), where

g1 =

√−1 0

0 −
√
−1

 , g2 =

 0
√
−1

√
−1 0

 , T =

 0 −
√
−1

√
−1 0

 .

So for any ~z ∈ S2, there exists a ∈ C2 with |a| = 1 such that

~z = (〈
√
−1g1(a), a〉, 〈

√
−1g2(a), a〉, 〈−T (a), a〉). (3.12)

Assume the result is true for n = 2m − 1, and denote the Clifford matrices in

dimension 2m − 1 simply by {cj}2m−1
j=1 . Let {dj}2m+1

j=1 be the Clifford matrices in

dimension 2m + 1, as defined in [5, p. 206 Equation (2)]. Then it is easily seen

that

dj = I ⊗ cj for j = 1, · · · , 2m− 2, I is the 2× 2 identity matrix,

d2m−1 = −
√
−1g1 ⊗ c2m−1,

d2m = −
√
−1g2 ⊗ c2m−1,

d2m+1 = T ⊗ c2m−1.

(3.13)

Now let X ∈ S2m, then X = (y1, y2, · · · , y2m−1~z) for some y = (y1, · · · , y2m−1) ∈

S2m−2 and ~z ∈ S2. By induction assumption, there exists b ∈ C2m−1
with |b| = 1

such that

y = (〈
√
−1c1(b), b〉, · · · , 〈

√
−1c2m−1(b), b〉)

and by (3.12), there exists a ∈ C2 with |a| = 1 such that

−~z = (〈
√
−1g1(a), a〉, 〈

√
−1g2(a), a〉, 〈−T (a), a〉).
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Combining these with (3.13), it is easily seen that ηa⊗b = X.

(ii) For the even case, we also apply induction on m. When n = 2, the two

Clifford matrices are g1 and g2 and ηa = (−|a1|2 + |a2|2,−a1a2 − a2a1) where

a = (a1, a2) ∈ C2. For X = (cos θ, sin θ) ∈ S1, just take a = (− sin θ
2
, cos θ

2
) so

that ηa = X.

Assume the result is true for n = 2m and denote {cj}2m
j=1 to be the corre-

sponding Clifford matrices as defined in [5, p. 206 Equation (1)]. Let {dj}2m+2
j=1

be the Clifford matrices for n = 2m+ 2. Then it is easily seen that
d1 = I ⊗ g1 where I is the 2m × 2m identity matrix,

d2 = I ⊗ g2 where I is the 2m × 2m identity matrix,

dj+2 = cj ⊗ T for j = 1, · · · , 2m.

(3.14)

Now let X ∈ S2m+1, then X = (z1, z2, z3~y) for some (z1, z2, z3) ∈ S2 and ~y ∈

S2m−1. By (3.12), there exists b ∈ C2 with |b| = 1 such that

(z1, z2,−z3) = (〈
√
−1g1(b), b〉, 〈

√
−1g2(b), b〉, 〈−T (b), b〉)

and by induction assumption, there exists a ∈ C2m−1
with |a| = 1 such that

~y = (〈
√
−1c1(a), a〉, · · · , 〈

√
−1c2m(a), a〉).

Combining these with (3.14), it is easily seen that ηa⊗b = X.

3.2.2 The hypersurface Dirac operator

In this subsection, we will give some general results for the hypersurface Dirac

operator. Most of the materials in this section can be found, for example, in [16].

Recall that on a spinor bundle S(Mn) over (M, g), the Dirac operator D is

defined to be

Dψ =
n∑
i=1

cM(ei)∇M
ei
ψ
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for any spinor ψ ∈ Γ(S(M)), where {ei}ni=1 is a local orthonormal frame on M ,

cM is the Clifford multiplication and ∇M is the spin connection on S(M). The

local formula for ∇M is given by [21, Theorem 4.14]

∇M
ei
ψ = ei(ψ) +

1

2

n∑
j<k

〈∇eiej, ek〉cM(ej)cM(ek)ψ,

where {ei}ni=1 are orthonormal frames on M . For simplicity, let us write c for cM

and ∇ for ∇M .

Now, for a spin manifold M , if Σ ⊂ M is an oriented smooth hypersurface,

then M induces a natural spin structure on Σ, compatible with the induced

orientation from M .

We let S := S(Mn)|Σ, the restriction of the spinor bundle of M to Σ. Then

it can be shown that S = S(Σ) when n is odd and S = S(Σ) ⊕ S(Σ) when n is

even. We will work on S instead of S(Σ).

Definition 3.11. We define the hypersurface spin connection ∇S, the hypersur-

face Clifford multiplication cS and the hypersurface Dirac operator DS on S by

∇S
Xψ = ∇Xψ +

1

2
c(ν)c(B(X))ψ,

cS(X) = −c(ν)c(X),

DSψ =
n−1∑
a=1

cS(ea)∇S
eaψ.

where ν is a fixed unit normal (outward if this makes sense) and B is the shape

operator on Σ, i.e. B(X) = −∇Xν.

In local formula, for {ea}n−1
a=1 orthonormal on Σ and en = ν be the unit outward

normal,

∇S
eaψ = ∇eaψ +

1

2

n−1∑
b=1

habc(eb)c(en)ψ. (3.15)

(It can be verified that ∇S = ∇Σ ⊕∇Σ and cS = cΣ ⊕−cΣ when n is even. )
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Definition 3.12. We define the Killing spin connection ∇̂, Killing Dirac operator

D̂ and the Killing boundary operator B̂ respectively by

∇̂V ψ = ∇V ψ +

√
−1

2
kc(V )ψ,

D̂ψ =
n∑
i=1

c(ei)∇̂eiψ,

B̂ψ =
n−1∑
a=1

c(en)c(ea)∇̂eaψ = ∇̂enψ + D̂ψ.

(3.16)

Actually B̂ is the boundary operator for the Lichnerowicz type formula ([38]

Equation 3.2): for any bounded region U with smooth boundary, we have∫
U

(
〈∇̂ψ, ∇̂ϕ〉+

1

4
(R + n(n− 1))〈ψ, ϕ〉 − 〈D̂ψ, D̂ϕ〉

)
=

∫
∂U

〈ψ, B̂ϕ〉. (3.17)

where R is the scalar curvature.

From now on until the end of this section, the indices a, b, c run from 1 to

n− 1 and i, j, k run from 1 to n. Repeated indices will be summed over.

Proposition 3.13. Let ψ be a spinor on M and H is the mean curvature of

Σ ⊂M . Then on Σ,

B̂ψ = −DSψ − H

2
ψ −
√
−1

2
k(n− 1)c(en)ψ.

Proof. We have B̂ψ = c(en)c(ea)∇̂eaψ. Using (3.15),

c(en)c(ea)∇̂eaψ = c(en)c(ea)∇S
eaψ +

1

2
habc(ea)c(eb)−

√
−1

2
k(n− 1)c(en)ψ.

We have cS(ea) = c(ea)c(en), so c(en)c(ea)∇S
ea = −DS. Also, habc(ea)c(eb) = −H.

The result follows.

Let us now return to the hyperbolic space. More precisely, define M = Hn
−k2 \

Ω0. Let A : (TM, g′)→ (TM, g′′) be the Gauge transformation defined by A ∂
∂ρ

=

1
u
∂
∂ρ

(u as defined in (3.6)) and AV = V for any vector V tangential to Σρ. A can

be lifted to the spinor bundles as an isometry [1], i.e. A : S(M, g′) → S(M, g′′).

Also,

A(c′(X)ψ) = c′′(AX)Aψ
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where c′ (resp. c′′) denotes the Clifford multiplication associated to g′ (resp. g′′).

We will also denote by e′′n (resp. e′n) to denote the unit outward normal of Σρ

with respect to g′′ (resp. g′).

Proposition 3.14. Let φ′0 be a Killing spinor with respect to ∇′ on M = Hn
−k2\Ω0

and φ0 = Aφ′0. Let DS be the hypersurface Dirac operator on Σρ with respect to

(M, g′′) as defined in (3.16). Then on Σρ,

−DSφ0 =
H0

2
φ0 +

√
−1

2
k(n− 1)c′′(e′′n)φ0.

(Recall that H0 is the mean curvature of Σρ with respect to g′. )

Proof. (The proof is the same as in [38] except we have to replace ∇Σρ by ∇S

etc, corresponding to Σρ. )

For ∇eaψ := A∇ea(A
−1ψ), we have

∇eaφ0 = −
√
−1

2
kc′′(ea)φ0 (3.18)

Consider

∇eaψ =ea(ψ) +
1

2

n−1∑
b<c

g′′(∇eaeb, ec)c
′′(eb)c

′′(ec)ψ

+
1

2

n−1∑
b=1

g′′(∇eaeb, e
′′
n)c′′(eb)c

′′(e′′n)ψ.

(3.19)

Note that g′′(∇eaeb, ec) = g′′(A∇′eaA
−1eb, ec) = g′′(A∇′eaeb, Aec) = g′(∇′eaeb, ec) =

g′′(∇′′eaeb, ec). (g′ and g′′ induces the same metric on Σρ. ) Also, g′′(∇eaeb, e
′′
n) =

g′′(A∇′eaA
−1eb, Ae

′
n) = g′(∇′eaeb, e

′
n) = −h0

ab. So (3.19) becomes

∇eaψ = ea(ψ) +
1

2

∑
b<c

g′′(∇′′eaeb, ec)c
′′(eb)c

′′(ec)ψ −
1

2
h0
abc
′′(eb)c

′′(e′′n)ψ

= ∇S
eaψ −

1

2
h0
abc
′′(eb)c

′′(e′′n)ψ by (3.15).

(3.20)

Note that by definition of DS and cS,

DSψ = cS(ea)∇S
eaψ = −c′′(e′′n)c′′(ea)∇S

eaψ.
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So using (3.20) and (3.18),

DSφ0 = −c′′(e′′n)c′′(ea)

(
∇eaφ0 +

1

2
h0
abc
′′(eb)c

′′(e′′n)φ0

)
= −c′′(e′′n)c′′(ea)

(
−
√
−1

2
kc′′(ea)φ0 +

1

2
h0
abc
′′(eb)c

′′(e′′n)φ0

)
= −
√
−1

2
k(n− 1)c′′(e′′n)φ0 −

H0

2
φ0.

Proposition 3.15. With the assumptions in Theorem 3.7, let φ′a,0 be a Killing

spinor with respect to g′ and φ0 = Aφ′0 on M . Then the limit lim
ρ→∞

∫
Σρ

(H0 −

H)|φ0|2g′′dΣρ exists.

Proof. φ′0 = φ′a,0 as in Proposition 3.9. By Proposition 3.9, |φa,0|2g′′ = −2kX · ζa.

By (3.3), e−kρX(p, ρ)→ γ(p) = X(p, 0) + 1
k
N(p, 0).

Also enkρ(H0 − H) = H0e
nkρ(1 − u−1) → (n − 1)kv as given by Lemma 3.2

and Proposition 3.3. By Lemma 3.2 again, e−(n−1)kρdΣρ tends to a measure dµ

on Σ, induced by the metric g∞ = lim
ρ→∞

e−2ρgρ.

All the above limits are uniform in ρ. Thus we have∫
Σρ

(H0 −H)|φ0|2g′′dΣρ = −2k

∫
Σ

H0(enkρ(1− u−1))(e−kρX(p, ρ) · ζa)e−(n−1)kρdΣρ

→ −2(n− 1)k2

∫
Σ

v(γ · ζa)dµ.

3.2.3 Proof of Theorem 3.7

Following the ideas in [38] Theorem 6.1, we now give the proof of Theorem 3.7.

Proof of Theorem 3.7. Define g′′ = u2dρ2 +gρ on M = Hn
−k2 \Ω0 as in (3.5), with

u satisfying (3.6). Let g̃ be the metric defined on M̃ = M ∪F Ω such that g̃ = g

on Ω and g̃ = g′′ on M , where F is the embedding of Ω into Hn
−k2 . Note that g̃
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is Lipschitz near ∂Ω, i.e. there is a smooth coordinates around ∂Ω such that the

coefficients g̃ij are Lipschitz.

Let ∇̂V = ∇̃V +
√
−1
2
kc̃(V ) and D̂ = c̃(ei)∇̂ei be the Killing connection and

Killing-Dirac operator associated with g̃ respectively. (All inner products and

norms in this proof are taken with respect to g̃ unless otherwise stated. )

Let φ′0 be a Killing spinor on Hn
−k2 and φ0 = Aφ′0 on M , we claim that there

is a (Killing harmonic) spinor φ with D̂φ = 0 on M̃ such that

0 ≤ lim
m→∞

∫
Σρm

〈φ, B̂φ〉 = lim
m→∞

∫
Σρm

〈φ0, B̂φ0〉 (3.21)

where ρm →∞ and B̂ is the boundary operator with respect to g̃ as in (3.16).

Since we are only interested in the asymptotic behavior, by cutting off, we can

assume that φ0 can be extended smoothly on the whole M̃ . Then near infinity

(i.e. outside a compact set), for ∇ = A∇A−1, we have∇eaφ0 = −
√
−1
2
c̃(ea)φ0,

∇ ∂
∂ρ
φ0 = −

√
−1
2

1
u
c̃( ∂
∂ρ

)φ0.

So ∇̂eaφ0 = ∇̃eaφ0 +
√
−1
2
c̃(ea)φ0 = (∇̃ea −∇ea)φ0,

∇̂ ∂
∂ρ
φ0 = ∇̃ ∂

∂ρ
φ0 +

√
−1
2
c̃( ∂
∂ρ

)φ0 = (∇̃ ∂
∂ρ
− u∇ ∂

∂ρ
)φ0.

By the estimates in Lemma 2.1 of [1], we have

|(∇̃ − ∇)ψ| ≤ C|A−1||∇′A||ψ|.

By Proposition 3.3, |A−1||∇′A| = O(e−nkρ). Also |φ0|2 = O(ekρ) by Proposition

3.9, so |∇̂φ0| = O(e−(n− 1
2

)kρ). By Lemma 3.2, the volume element of (M̃, g̃) is of

order e(n−1)kρ. We then have ∇̂φ0, and therefore D̂φ0, are both in L2(M̃, g̃).

We now find φ1 ∈ W 1,2 such that D̂φ1 = D̂φ0 as follows. We define a linear

map on W 1,2 by

l(ψ) =

∫
M̃

〈D̂ψ, D̂φ0〉.
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Define the sesquilinear form B on W 1,2 by

B(ψ, ϕ) =

∫
M̃

〈D̂ψ, D̂ϕ〉.

We claim that B is bounded and coercive.

Let M̃ρ be the region in M̃ bounded by Σρ and let ψ, ϕ ∈ C∞c . On M̃ρ \ Ω,

R = −n(n− 1), so by the Lichnerowicz formula (3.17), Proposition 3.13 and the

definition of B̂,∫
M̃ρ\Ω

(〈∇̂ψ, ∇̂ϕ〉−〈D̂ψ, D̂ϕ〉) =

∫
∂Ω

〈ψ, (DS+
H

2
+
√
−1c′′(ν))ϕ〉+

∫
Σρ

〈ψ, (∇ν+c
′′(ν)D̂)ϕ〉.

On Ω ⊂ M̃ρ,∫
Ω

(〈∇̂ψ, ∇̂ϕ〉−〈D̂ψ, D̂ϕ〉+1

4
(R+n(n−1))〈ψ, ϕ〉) =

∫
∂Ω

〈ψ,−(DS+
H

2
+
√
−1c′′(ν))ϕ〉.

To be precise, H in the two equations above are the mean curvatures of ∂Ω with

respect to g′′ and g respectively, but since they agree ((3.6), (3.7)), so adding

them up gives∫
M̃ρ

(
〈∇̂ψ, ∇̂ϕ〉 − 〈D̂ψ, D̂ϕ〉+

1

4
(R + n(n− 1))〈ψ, ϕ〉

)
=

∫
Σρ

〈ψ, (∇ν+c
′′(ν)D̂)ϕ〉.

As R = −n(n− 1) outside Ω, so

B(ψ, ϕ) =

∫
M̃

〈D̂ψ, D̂ϕ〉 =

∫
M̃

(
〈∇̂ψ, ∇̂ϕ〉+

1

4
(R + n(n− 1))〈ψ, ϕ〉

)
≤ C|ψ|W 1,2|ϕ|W 1,2 .

So B is bounded on W 1,2. On the other hand, as R ≥ −n(n− 1), for ψ ∈ C∞c ,∫
M̃

|D̂ψ|2 ≥
∫
M̃

|∇̂ψ|2 =

∫
M̃

(
|∇ψ|2 +

n|ψ|2

4
+

√
−1

2
(〈Dψ,ψ〉 − 〈ψ,Dψ〉)

)
=

∫
M̃

(
|∇ψ|2 +

n|ψ|2

4

)
≥ C|ψ|2W 1,2 .

So B is also coercive. Then by Lax-Milgram theorem, there exists φ1 ∈ W 1,2 such

that B(φ1, ψ) = l(ψ) for all ψ ∈ W 1,2. i.e.∫
M̃

〈D̂(φ1 − φ0), ψ̂〉 = 0.
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Let φ = φ1 − φ0 and define β = D̂φ, so we have∫
M̃

〈β, D̂ψ〉 = 0 for all ψ ∈ W 1,2.

This implies D̂β = −n
√
−1β weakly, as D̂∗ = D̂ + n

√
−1.

As argued in [34] Lemma 3.3, β ∈ W 1,2
loc . Note also that in the weak sense,

D̂β = −n
√
−1β = −n

√
−1(D̂φ1 − D̂φ0) ∈ L2. Then∫

M̃ρ

〈D̂β, D̂β〉 =

∫
M̃ρ

〈(D̂ + n
√
−1)D̂β,Dβ〉 −

∫
Σρ

〈c̃(ν)D̂β, D̂β〉

=

∫
M̃ρ

〈D̂(D̂ + n
√
−1)β, β〉 −

∫
Σρ

〈c̃(ν)D̂β, D̂β〉

= −
∫

Σρ

〈c̃(ν)D̂β, D̂β〉

≤
∫

Σρ

|D̂β|2.

As

∫
M̃

|D̂β|2 < ∞, there is a sequence ρm → ∞ such that
∫

Σρm
|D̂β|2 → 0. But

then ∫
M̃

|D̂β|2 = lim
m→∞

∫
M̃ρm

|D̂β|2 ≤ lim
m→∞

∫
Σρm

|D̂β|2 → 0.

i.e. D̂β = 0. As D̂β = −n
√
−1β, we have

D̂φ = β = 0.

Now, by the Lichnerowicz formula (3.17), as D̂φ = 0,

0 ≤
∫
M̃ρ

(
|∇̂φ|2 +

1

4
(R + n(n− 1))|φ|2

)
=

∫
Σρ

〈B̂φ, φ〉

=

∫
Σρ

〈B̂(φ1 − φ0), φ1 − φ0〉

=

∫
Σρ

〈B̂φ0, φ0〉+

(∫
Σρ

〈B̂φ1, φ1〉 −
∫

Σρ

〈B̂φ0, φ1〉 −
∫

Σρ

〈B̂φ1, φ0〉

)
.
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We claim that there is ρm → ∞ such that the three terms in the bracket

above will tend to zero as m→∞. Consider∫
Σρ

〈B̂φ0, φ1〉 =

∫
Σρ

〈(∇̂ν + c̃(ν)D̂)φ0, φ1〉

≤ (

∫
Σρ

|∇̂νφ0|2)
1
2 (

∫
Σρ

|φ1|2)
1
2 + (

∫
Σρ

|D̂φ0|2)
1
2 (

∫
Σρ

|φ1|2)
1
2 .

As

∫
M̃

|∇̂φ0|2,

∫
M̃

|D̂φ0|2 and

∫
M̃

|φ1|2 are all finite, there is ρm → ∞ such

that

∫
Σρm

〈B̂φ0, φ1〉 → 0. Similarly, as

∫
M̃

|φ̂1|2 < ∞, we can also assume that∫
Σρm

〈B̂φ1, φ1〉 → 0. (3.21) is proved.

Now, by Proposition 3.13 and 3.14,

0 ≤ lim
m→∞

∫
Σρm

〈B̂φ, φ〉 = lim
m→∞

∫
Σρm

〈B̂φ0, φ0〉 = lim
m→∞

1

2

∫
Σρm

(H0 −H)|φ0|2g̃.

By Proposition 3.15, lim
ρ→∞

1

2

∫
Σρ

(H0 −H)|φ0|2g̃ exists, therefore

lim
ρ→∞

1

2

∫
Σρ

(H0 −H)|φ0|2g̃ ≥ 0.

To finish the proof, by Proposition 3.10, we can let ζ = ζa. Let φ′a,0 be the

corresponding Killing spinor on Hn
−k2 and φa,0 = Aφ′a,0 outside Ω. By Proposition

3.9, |φa,0|2g̃ = |φ′a,0|2g′ = −2kX · ζa. So the above argument shows that

−k lim
ρ→∞

∫
Σρ

(H0 −H)X · ζa ≥ 0.

In other words, lim
ρ→∞

∫
Σρ

(H0 −H)XdΣρ is a future-directed non-spacelike vector.

3.3 Positivity of Shi-Tam mass

Now assume n ≥ 3 and let (Ω, g) be as described in section 3.1. Recall that

B0(R1) and B0(R2) are geodesic balls in Hn
−k2 such that B0(R1) ⊂ Ω0 ⊂ B0(R2).
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Theorem 3.16. (cf. [35] Theorem 3.1) Let n ≥ 3 and (Ω, g) be a compact spin

n-manifold with smooth boundary Σ. Assuming the following conditions:

1. The scalar curvature R of (Ω, g) satisfies R > −n(n− 1)k2 for some k > 0,

2. Σ is topologically a (n− 1)-sphere with sectional curvature K > −k2, mean

curvature H > 0 and Σ can be isometrically embedded uniquely into Hn
−k2

with mean curvature H0.

Then for any future directed null vector ζ in Rn,1,

m(Ω, ζ) =

∫
Σ

(H0 −H)W · ζ ≤ 0

where W = (x1, x2, · · · , xn, αt) with

1 < α = coth kR1 +
1

sinh kR1

(
sinh2 kR2

sinh2 kR1

− 1

) 1
2

,

X = (x1, x2, · · · , xn, t) is the position vector in Rn,1 and the inner product is given

by the Lorentz metric.

Let (φ1, · · · , φn) denote the position vectors of points of Sn−1 in Rn. Let {Σρ}

be the foliation of Hn
−k2 \ Ω0 described in section 3.1. We need the following:

Lemma 3.17. With the assumptions in Theorem 3.16, let (y1, · · · , yn) ∈ Rn such

that
n∑
i=1

y2
i = 1. Let φ =

n∑
i=1

φiyi. Then for ρ > 0,

(
∂φ

∂ρ
)2 ≤ (1− φ2)k2 sinh−2 kr

(
1− (

∂r

∂ρ
)2

)
.

Hence ∣∣∣∣∂φ∂ρ
∣∣∣∣ ≤ µk

∣∣∣∣∂r∂ρ
∣∣∣∣ (3.22)

where

µ =
1

sinh kR1

(
sinh2 kR2

sinh2 kR1

− 1

) 1
2

.
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Proof. The same as in [35] Lemma 3.3 (ii). The position vectors in Rn,1 can be

parametrized by

X =
1

k
(sinh kr cos θ, sinh kr sin θ~z, cosh kr)

where ~z ∈ Sn−2 ⊂ Rn−1. Then the hyperbolic metric (outside Ω0) is

g′ = dρ2 + gρ = dr2 + k−2 sinh2 r(dθ2 + sin2 θdσ)

where dσ is the standard metric on Sn−2. Compute g′( ∂
∂ρ
, ∂
∂ρ

) in the above two

forms of g′, we have

1 = (
∂r

∂ρ
)2 + k−2 sinh2

[
(
∂θ

∂ρ
)2 + sin2 θdσ(

∂

∂ρ
,
∂

∂ρ
)

]
≥ (

∂r

∂ρ
)2 + k−2 sinh2(

∂θ

∂ρ
)2.

Since φ = cos θ, the conclusion follows.

Proof of Theorem 3.16. X can be expressed as

X =
1

k
(sinh(kr)Y, cosh kr) =

1

k
(sinh(kr)y1, · · · , sinh(kr)yn, cosh kr).

where |Y |2 =
n∑
i=1

y2
i = 1. Without loss of generality we can assume that ζ =

(ζ1, · · · , ζn, 1) where
n∑
i=1

ζ2
i = 1.

Let φ =
n∑
i=1

yiζi, then Lemma 3.6 implies (we omit dΣρ for convenience)

d

dρ
(

∫
Σρ

(H0 −H)W (ρ, p) · ζ)

=−
∫

Σρ

u−1(u− 1)2(
1

2
(Rρ + (n− 1)(n− 2)k2)(φ sinh kr − α cosh kr)

+H0
∂

∂ρ
(φ sinh kr − α cosh kr))

=−
∫

Σρ

u−1(u− 1)2(
1

2
(H2

0 − |A|2)(φ sinh kr − α cosh kr)

+H0
∂

∂ρ
(φ sinh kr − α cosh kr))

=−
∫

Σρ

u−1(u− 1)2B where

(3.23)
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B =
1

2
(H2

0 − |A|2)(φ sinh kr − α cosh kr)

+ kH0(φ cosh kr
∂r

∂ρ
+

1

k
sinh kr

∂φ

∂ρ
− α sinh kr

∂r

∂ρ
).

(3.24)

Here A is the second fundamental form of Σρ with respect to the hyperbolic

metric. Let λa(p, ρ) be the principal curvature of Σρ. Then λa = k tanh k(µa+ρ),

k, or k coth k(µa + ρ) with µa > 0 ([38] p.255). In particular,

H2
0 − |A|2 = 2

∑
a<b

λaλb ≥ 0.

We want to show B ≤ 0. For the first term of B, consider

φ sinh kr − α cosh kr ≤ sinh kr − cosh kr < 0. (3.25)

To show that the last term of R.H.S. of (3.24) is also negative, it suffices to show

φ cosh kr
∂r

∂ρ
+

1

k
sinh kr

∂φ

∂ρ
− α sinh kr

∂r

∂ρ
< 0.

Recall that o ∈ Ω0 and r is the geodesic distance from o. Let p ∈ Σ and

let γ be the (arc-length parametrized) geodesic through p which is orthogonal

to Σ. Let q be the point on γ such that a = d(o, q) = d(o, γ). Since the last

term of R.H.S. of (3.24) involves only the derivatives with respect to ρ, we can

assume that γ(0) = q and γ(ρ0) = p for some positive ρ0, so that ρ is the geodesic

distance from q to γ(ρ). Denote the geodesic from x to y to be xy.

If o 6= q, then oq and qp forms a right angle at q. That is, o, q and γ(ρ) forms

a right-angled triangle on the totally geodesic H2
−k2 containing them with sides

a, ρ and hypotenuse r.

The cosine law cosh kr = cosh ka cosh kρ implies

∂r

∂ρ
=

cosh ka sinh kρ

sinh kr
> 0.
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If o = q, then r = ρ and clearly ∂r
∂ρ

= 1 > 0. So by (3.22),

φ cosh kr
∂r

∂ρ
+

1

k
sinh kr

∂φ

∂ρ
− α sinh kr

∂r

∂ρ

≤ cosh kr
∂r

∂ρ
+

1

k
sinh kr(µk

∂r

∂ρ
)− α sinh kr

∂r

∂ρ

=(cosh kr + sinh kr(µ− α))
∂r

∂ρ

=(cosh kr − sinh kr coth kR1)
∂r

∂ρ

<0. (as r > R1)

Substituting into (3.23), we have

d

dρ
(

∫
Σρ

(H0 −H)W (ρ, p) · ζ) ≥ 0.

By Theorem 3.7 and Corollary 3.8, we conclude that

m(Ω, ζ) =

∫
Σ

(H0 −H)W · ζ ≤ 0.
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